Terminology/ko
From Kerbal Space Program Wiki
< Terminology
Revision as of 14:17, 9 November 2014 by Kerbal.pseudo.logos (talk | contribs) (→Space Maneuvers: 항법기동 항목 번연 완료)
KSP에서 궤도에 관련된 말들은 종종 전문가가 아닌 사람들에게 혼동을 줄 수 있는, 물리학에 관련된 많은 용어가 있습니다. 또한, 다양한 다른 과학 용어 및 약어는 일반적인 용어를 설명하는 데 사용됩니다.
이 시트는 처음으로 하는 사람들이나 도움이 필요한 사람들에게 용어의 간결한 조회 테이블로 설계되었습니다!
수학
- Elliptical(타원형의)
- 타원형 궤도를 나타냅니다.
- Normal vector(표준 벡터)
- 표면에 수직인 벡터
- Scalar(스칼라)
- 방향이 없는, 단일 값입니다. 스칼라는 일반적으로 스칼라 차원이 무엇인지 알려줍니다. 예를 들자면, 3 미터/초, 3 미터,3 초는 스칼라입니다: 그들은 각각 속도, 거리 및 시간을 나타내는 단위가 있지만 방향이 없습니다.
- Vector(벡터)
- 방향의 설정 및 방향의 값을 나타냅니다. 예를 들어, 제목(방향)및 속도를 함께 보여줍니다. 벡터를 표현하는 방법의 좌표가 무엇인지에 따라, 많은 치수가 고려됩니다. <35°, 12> is a two dimensional polar vector, where <14, 9, -20> is a three dimensional Cartesian vector. There are other coordinate systems but these are the most utilized.
- <35°, 12> looks like an arrow which is 12 units long, starting from the origin (zero, angle does not matter because it is a point with no length) and ending at a point 35° from the base axis (typically the x-axis, positive angles progress counter-clockwise)
- <14, 9, -20> looks like an arrow starting from the origin (<0,0,0>) and ending at a point where the x coordinate is at 14, the y coordinate = 9 and the z coordinate = -20.
- The upside to using Cartesian coordinates is that you know exactly where the terminal position is, but it is more difficult to figure the length, however in polar coordinates it is trivial to find the length, the downside is its more difficult to know the position.
- The following physical qualities are all vectors: velocity, acceleration, force
A 3D coordinate systems needs:
- A point of reference. This is your origin.
- 3 base-vectors. These define your base unit of measurement along the axis and the direction of said axis.
- A mix of 3 scalars, that could be either angles or co-ordinates to express locations in your co-ordinate space.
궤도(궤도함수; Orbital) 관련 용어
- 원점(遠點, 또는 원행점 遠行點) Apoapsis
- 지구를 궤도의 중심체(기준)로 하는 경우에는 원지점(遠地點), 태양을 기준으로 하는 경우에는 원일점(遠日點)이라 합니다.[참고: 천체물리학]
- 근점(近點, 또는 근행점 近行點) Periapsis
- 지구를 궤도의 중심체(기준)로 하는 경우에는 근지점(近地點), 태양을 기준으로 하는 경우에는 근일점(近日點)이라 합니다.[참고: 천체물리학]
- 장축단(長軸端) Apsis
- → 참고하기: “Apoapsis and periapsis” section in Orbit
- 모든 타원 궤도는 두개의 장축단을 가지고 있습니다. 근점(periapsis [Pe])은 궤도의 본체(중심체; 중심행성)에 가장 가까운 지점(궤도에서는 최저고도 지점)이고, 원점(apoapsis [Ap])은 반대로 가장 먼 지점(궤도에서는 최고고도 지점)입니다. 대부분의 공식(formula)은 본체(중심체) 중심에서부터의 거리를 필요로 하는데 반해, 장축단은 통상 본체(중심체)의 표면에서부터 얻어지므로 본체(중심체; 행성)의 반지름을 더한 값을 입력해야 합니다.
- 타원에는 두개의 지름(축)이 있는데, 긴 지름을 장축(長軸)이라하고 짧은 지름을 단축(短軸)이라 합니다. 반지름은 각각 반장축, 반단축이라 합니다. 장축단은 장축의 양 끝(端: 끝 단)을 의미하며, 타원의 중심에서 먼 끝을 최원점(Apogee)이라하고 가까운 끝을 최근점(Perigee)이라합니다. 천체물리학에서는 "Apogee"를 원지점(遠地點)이라 하고 "Perigee"를 근지점(近地點)이라 합니다. 참고로 원일점(遠日點)은 "aphelion", 근일점(近日點)은 "perihelion"이라 합니다. 어원은 모두 그리스어에서 유래되었습니다.[참고: 기하학, 천체물리학]
- 접두사 페리(Peri-*)와 애포(Apo-*)
- 그리스어에서 유래된 접두사 페리(Peri-)는 가까운(near)이라는 의미이며, 아포 또는 애포(Apo-)는 먼(away from)이라는 뜻입니다. 궤도와 관련하여 자주 언급되는 "근점(periapsis)"과 "원점(apoapsis)"은 종종 궤도의 중심이 되는 특정 행성이나 위성의 이름을 이용하여 고쳐 부르기도 합니다. 예를들어, "-kee"나 "-kerb"는 행성 커빈(Kerbin)의 주위를 도는 궤도에 사용되어 "Perikee/Perikerb" 또는 "Apokee/Apokerb"라고 부르기도 합니다.
- 승교점(昇交點) Ascending node
- (공전)궤도가 수평 기준면(reference plane; 궤도의 중심천체가 갖는 수평면, 지구의 경우 적도, 태양의 경우 황도)을 북쪽 방향으로 교차하며 만나는 지점을 승교점이라고 합니다. 여기서 "북쪽"이라함은 수평 기준면에 대한 법선(orbit normal; 수평 기준면에 수직인 직선)방향을 말합니다.(그림: 궤도 도해 참조)
- 강교점(降交點) Descending node
- (공전)궤도가 수평 기준면을 남쪽 방향으로 교차하며 만나는 지점을 강교점이라고 합니다.
- 이심률(離心率) Eccentricity
- 궤도가 얼마나 원형에서 벗어났는가(찌그러졌는가)를 나타내는 스칼라값입니다.
- ecc = 0 → 원형 궤도.
- 0 < ecc < 1 → 타원형 궤도.
- ecc = 1 → 포물선 궤도 - 탈출 궤도.
- ecc > 1 → 쌍곡선 궤도 - 탈출 궤도.
- 궤도 경사각(軌道 傾斜角) Inclination
- 수평 기준면에 대한 궤도면(orbit plane; 위성체의 궤도가 이루는 수평면)의 기울기를 뜻합니다. 예를들어, 적도 기준면에 대하여 90°의 궤도 경사각을 갖는 위성궤도를 극궤도라고 합니다.
- 저궤도(低軌道) Low orbit
- 공기 저항과 같은 위성체의 공전을 위태롭게 하는 요소들을 간신히 모면할 수 있을 정도의 고도를 형성하는 궤도를 말합니다. 저궤도는 상승 직후나 다른 물체(행성 또는 우주선)와 만나기 위한 추진분사 전의 디딤돌 역할을 하여, 어느 방향으로든 이탈 추진(분사)을 가능하게 해주는데 행성 표면으로부터 저궤도까지 도달할 만클의 연료만을 필요로 합니다. 커빈의 저궤도는 통상 80 ~ 100킬로미터에 위치한다. 대기가 없는 행성은 이론적으로 지표면으로부터 떨어진 어떤 높이든 공전궤도가 형성된다고 할 수 있으나, 10킬로미터 이하에서는 고지대나 높은 산에 부딪힐 위험이 있습니다. 시간가속은 저궤도에서는 낮은 단계의 가속만 가능하도록 제한됩니다.
- 궤도 분기점(軌道 分岐點, 궤도 교점 軌道交點 ) Orbital nodes
- 궤도에서의 특정한 기준점으로 원점, 근점 또는 궤도간 교차점 등을 말한다.
- 궤도 법선(軌道 法線) Orbit normal
- 궤도면에서의 법선벡터를 말합니다. 우주선의 속도와 중력의 교차곱으로 구합니다. 오른손 법칙에 따라, 반시계방향으로 궤도비행을 하는 우주선은 "위쪽"을 가리키며 시계방향일 경우는 "아래쪽"을 가리킴니다. "위쪽"은 흔히 "북쪽" 혹은 "N+"로 표시하고, "아래쪽"은 "Anti-Normal", "남쪽" 또는 "N-"로 표시합니다.
- 궤도면(軌道面) Orbital plane
- 행성의 주위를 도는 궤도가 이루는 가상의 평면이며, 보통 궤도 경사각을 설명하는데 사용됩니다.
- 순행(循行) Prograde
- 공전궤도를 따라 주회하는 우주선의 방향(정방향)을 뜻합니다. 타원궤도를 돌고 있다면, 우주선이 위치한 지점에서 궤도의 접선방향(tangent)을 가리키게 됩니다.
- 역행(逆行) Retrograde
- 순행(Prograde)의 반대방향이며, 공전궤도의 주회방향에 대해 역방향을 의미합니다.
- 수평 기준면(水平 基準面) Reference plane
- 현재의 공전궤도를 설명하기 위한 기준점으로 사용됩니다. 행성 주위를 도는 위성의 경우, 보통 행성의 적도면(equatorial plane)을 말합니다. 태양계에서 여러개의 천체가 포함되어 있는 경우는 황도면(ecliptic plane)을 가리킵니다. 다른 위성으로 궤도전이(intercept)를 하려면, 전이하려는 위성의 궤도면을 이용하면 됩니다. 궤도면(orbital plane)은 수평 기준면에 대한 상대적인 궤도 경사각(inclination)과 승교점 경도(longitude of ascending)로 기술됩니다.
- 긴반지름(반장축 半長軸) Semi-major axis
- → 참고하기: “Semi-major axis” section in Orbit
- 장축(major-axis)은 타원의 긴지름이며, 반장축(a)은 장축의 절반 즉 긴반지름이 됩니다. 행성의 중심에서부터 비례하여 원점(Ap)과 근점(Pe)의 평균으로 구합니다. 이 두 점은 행성의 표면에서부터 비례하므로, 반드시 반지름(R)을 더해줘야 합니다. 이심률에 상관없이, 같은 긴반지름(반장축)을 갖는 모든 궤도는 동일한 궤도 주기(軌道週期, orbital period)를 가집니다.
- 준궤도(準軌道) Sub-orbital
- 궤도의 근점이 행성의 지표 아래에 있는 궤도를 말합니다. 문자그대로 완전한 공전궤도를 형성하지 못한(준 準) 궤도를 말합니다. 준궤도의 궤적이 너무 길쭉하면(원점만 고도가 높은 경우) 위성체는 행성에 사정없이 충돌하게 됩니다.
- 추중비(추력대 중량비 推力對 重量比) Thrust-to-weight ratio
- → 참고하기: Thrust-to-weight ratio
총중량과 현 비행단계(stage)에서 기체에서 사용되는 모든 추진부품의 추진력사이의 비율이라고 말할 수 있습니다. 이 추중비(TWR)가 1보다 크면 우주선은 수직으로 상승하는데 충분한 추력을 가진것이 됩니다. 1보다 작으면 중력이나 저고도에서의 항력을 이기지 못합니다. 우주공간에서는 좀 더 많은 시간동안 추진분사를 해야된다는 차이가 있습니다. 왜냐면 중량(W)은 우주선에 영향을 미치는 행성의 중력가속도(g)에 영향을 받기 때문입니다. 일례로 뮨 표면에서의 중력가속도는 커빈의 16.6%밖에 안되기에, 커빈이 TWRKerbin = 1이라면 뮨 표면에서는 TWRMun = 6이 됩니다.
우주선 방향에 관한 용어
우주선의 기수(방향)는 항상 특정 물체에 대한 상대성을 갖습니다. 통상적으로 조종석을 기준으로 용어가 정의되어 있습니다.
- 천정(天頂) Zenith
- Top side of the ship which is usually oriented away from the orbited body. Opposite of nadir.
- 천저(天底) Nadir
- Bottom side of the ship which usually oriented towards the orbited body. Opposite of zenith.
- 좌현(左舷) Port(side)
- Left side of the ship. Opposite of starboard.
- 우현(右舷) Starboard
- Right side of the ship. Opposite of portside.
- 이물(선수 船首) Front
- Front side/end of the ship which is usually towards the nose or prograde vector. Opposite of aft.
- 고물(선미 船尾) Aft
- Back side/end of the ship which is usually housing the primary rockets and facing in retrograde. Opposite of front.
항법 기동(航法 機動)
- 공력 제동 Aerodynamic braking
- → 원문 : Aerobraking
- 근점을 행성의 대기권으로 낮추는 것을 말하며, 공기저항(항력)에 의해 우주선의 속도가 줄어들게 됩니다. 대기권 재진입을 위해 사용되기도 하지만(아래의 대기권 진입 참조), 급격한 궤도 변경을 위한 추진(분사) 시간을 줄이기 위해서도 사용됩니다.
- 대기권 진입 Atmospheric entry
- 대기권에 진입해 공기저항(항력)을 이용하여 지표면을 향하는 궤적을 그리도록 우주선을 감속하는 조종법을 말합니다. 대기권 진입시에는 우주선에 열충격이 발생하는데, 충분한 속도를 확보하지 못하였을 경우 우주로 되튕겨져 나갈수 있으므로 주의하세요. 현재(0.22[outdated]) 재진입은 아주 일부분의 효과만 구현하고 있어 열과 튕김 효과는 볼 수 없습니다. 다만, 모드(mod)를 통해 부품의 과열효과는 구현할 수 있습니다. 통상 재진입(re-entry/reentry)라고 부르지만, 커빈의 대기권에만 제대로 작동합니다; 대기권 진입이 좀 더 일반적으로 쓰이는 용어입니다.
- 분사(噴射 또는 추진) Burn
- 엔진을 분사하여 궤도에 변경을 가하는 것을 말합니다.
- 원형화 기동 Circularizing
- 궤도의 모양을 원형에 가까운 표류궤도(漂流軌道 혹은 준정지궤도, drift orbit)로 만드는 조종법을 말합니다. 통상 인공위성 발사단계에서 궤도의 원지점에 이르러 원지점 모터를 작동(분사 burn)시키는 단계를 일컫는 말입니다.[참고] 한글로 정의된 용어를 찾을 수 없어 임의로 작명한 것으로, 관련 전공자께서 올바른 학계/산업계 용어로 수정해주시기 바랍니다.
- 항법 분기점(航法 分岐點) Maneuver Node
- → 원문 : Maneuver node
- 실제 로켓을 분사하여 궤도를 변경하지 않고 지도화면에서 미리 변화될 궤적을 그려보고 기동계획을 세우는데 유용한 도구입니다.
- 대기권 재진입 Re-entry
- → 참고하기: 대기권 진입
- 역추진(분사) Retroburn
- 역행추진하는 것을 말합니다. 즉, 우주선의 기수(선수)는 역행방향(retrograde)으로 엔진의 분사구는 순행방향(prograde)으로 놓고 추진(분사)을 하는 것입니다. 다른 궤도 요소를 변화시키지 않고 궤도의 고도만을 낮추는데 사용하는 일반적인 조종법입니다.
Physics
- Acceleration
- Rate of change to the velocity. Acceleration is a vector, measured in "m/s2".
- Ballistic trajectory
- A falling object's trajectory is ballistic. In rocketry it usually indicates that the object in question is only influenced by gravity and does not exert any force (ie. thrust) of its own.
- Delta-v (Δv)
- The change in velocity that has or can be exerted by the spacecraft. This is measured in meters per second (m/s). More mass can reduce the delta-v, while more propulsion can increase it. This makes it a useful value to calculate the effectiveness of launch vehicles. For example, a launch vehicle requires about 4,500 m/s of delta-v to escape Kerbin's atmosphere and achieve a stable orbit.
- Energy
- → 참고하기: Specific orbital energy on Wikipedia
- The energy of an object in an orbit is the sum of its potential and kinetic energy. The potential energy is and kinetic energy where G is the gravitational constant, M is the mass of the body, m is the mass of the craft, R is the distance from the center of the body and v is the velocity. This results in . This sum stays the same when not thrusting: When approaching periapsis potential energy is transferred into kinetic energy. After passing the periapsis the kinetic energy is converted back into potential energy. When the energy or specific orbital energy is greater than zero the vehicle is on an escape trajectory.
- This is the basic idea behind Kepler's laws of planetary motion, which is what gives rise to KSP's patched conics approximation. An ellipse is the set of all points on a plane such that the sum of the distances to two points - the foci - is some constant. One focus of a Kepler orbit is the centre of mass of the object being orbited; as an object approaches it, it exchanges potential energy for kinetic energy. As the object moves away from this focus - equivalently, if the orbit is elliptical, as the object approaches the other focus - it exchanges kinetic energy for potential energy. If the craft going directly towards or away from the object, the foci coincide with the apsides, where the kinetic (apoapsis) or potential (periapsis) energy is zero. If it's perfectly circular (e.g. the Mun's orbit around Kerbin), the two foci coincide and the locations of the apsides are undefined, since every point of the orbit is an apsis.
- There is also the specific orbital energy () which doesn't require the mass of the craft: , , . All orbits with the same semi-major axis (a) have the same specific orbital energy.
- Escape Velocity
- The velocity needed to escape a given planet's gravity well, as given by where G is the gravitational constant, M is the mass of the planet, and r is the radius of the planet.
- g-force (G)
- A measurement of acceleration as expressed in the sea-level force of Earth's gravity with 1 G being about 9.81 m/s². An object at Earth's surface is accelerated at 1 G. The object weighs twice as much when at 2 G acceleration and is weightless when accelerated with 0 G. In free fall, like in orbit, and without an engine running or an atmosphere applying drag all objects experience no acceleration which can be expressed as 0 G.
- Gravity
- The force exerted by all objects with mass. Very weak. Usually only objects with very high mass - ie. planets, moons - have any noticeable effect. Diminishes with the square of distance from the center of mass. So for an object twice as far, experiences only 1/22 = 1/4 of the gravity.
- Gravity Well
- The area around a planet affected by gravity. Actually extends to infinity, but as gravity decreases quadratically with distance (after twice the distance the gravity is only a quarter), it is only significant within the body's sphere of influence. In fact, in KSP, gravity isn't simulated at all beyond a body's sphere of influence due to its use of the "patched conic approximation".
- Orbit
- → 원문 : Orbit
- When an object has sufficient tangential velocity (and is outside the atmosphere, so drag won't slow it down) so that it will keep falling "next" to the planet (never touching ground) its trajectory is called an orbit. Stable orbits are elliptical (a circle is an ellipse with zero eccentricity). If the objects tangential speed exceeds escape velocity it's orbit will be either para- or hyperbolic.
- Specific Impulse (Isp)
- → 원문 : Specific impulse
- The Isp defines how effective a propulsion system is. The higher the Isp the more powerful is the thrust applied to the rocket with the same fuel mass. The Isp is usually given in seconds but actually the physically correct unit is distance per time which is usually given in meters per second or feet per second. To avoid confusion which unit of speed is used, the physical correct Isp (in distance/time) is divided by the surface gravity of Earth (9.81 m/s²). This results in a value given in seconds. To use this Isp in formulas it must to be converted back into distance per time which requires multiplying with the surface gravity of Earth again. As this value is only used to convert between those two units, the specific impulse doesn't change when the gravity changes. It appears that KSP use a value like 9.82 m/s² and thus using a little less fuel.
- As the specific impulse is the ratio of thrust and fuel flow is sometimes given as the unit. This is mathematically another form of because force is the multiplication of mass and acceleration defining . So with the latter being simply only in SI base units.
- Sphere of influence
- The radius around a celestial body within which its gravity well is non-negligible. Commonly known as SoI/SOI.
- Tangential velocity
- The component of the velocity that is tangential to the trajectory. Instantaneous velocity - velocity when the time of measurement approaches zero - is always tangential to the trajectory.
- Trajectory
- A trajectory is the path that a moving object follows through space as a function of time.
- Velocity
- Rate of change of the position. It is the combination of speed with the direction. Velocity is a vector, measured in meters per second (m/s).