M700 Survey Scanner

From Kerbal Space Program Wiki
Revision as of 21:53, 19 March 2017 by P1h3r1e3d13 (talk | contribs) (Added a table of power and time required (WIP))
Jump to: navigation, search
This article is a stub. You can help KSP Wiki by expanding it.

article

M700 Survey Scanner
Part image
Scanner by
Experimental Engineering Group

Radial size Small, Radial mounted
Cost (total) 1 500.00 Funds
Mass (total) 0.200 t
Drag 0.2
Max. Temp. 2000 K
Impact Tolerance 7 m/s
Research ScanningTech.png Scanning Tech
Unlock cost 4 500 Funds
Since version 1.0
Part configuration SurveyScanner.cfg
Mode Orbital
Resource All
Scanning time 5 s
Science bonus 10
Min. Altitude 25 000 m [1]
Max. Altitude 1 500 000 m [2]
Packed volume None

  1. unless body radius / 10 is bigger
  2. unless body radius * 5 is smaller

The M700 Survey Scanner is an orbital low resolution resource scanner. It is used to map broad areas of resource concentration on a celestial body. It is the first step in finding locations which are rich in resources, for subsequent extraction. It provides a low detail overview of the entire celestial body, which can then be used to target specific areas for further detailed scanning with high resolution scanners (which can only scan a small area, not an entire celestial body).

Product description

This orbital survey scanner uses a combination of advanced sensor technology and witchcraft to provide information on a planet or moons natural resources. These images can be viewed either in flight, or in relative safety and comfort back at the KSC. Be sure to bring an antenna capable of transmitting the information back, and sufficient power.

Experimental Engineering Group

Usage

as it deployed for operation...

The scanner works well on a small 1.25m satellite, but has a large electrical demand when activated, so a Z-1k battery, or equivalent, is recommended. The electrical demand is brief, so it is not necessary to have a huge generating capacity. It is not particularly heavy, so a FL-T200 fuel tank and LV-909 engine are quite adequate for the final stage, providing the necessary power to establish and adjust the orbit, either from LKO to Mun and Minmus, or entry from solar orbit to another system. An antenna is required to upload the data back to KSC, and any antenna will suffice.

Launching should probably make use of a payload fairing or cargo bay, as the scanner is large and not a good aerodynamic shape, so is likely to cause atmospheric control issues when placed on top of a rocket. The scanner requires a stable polar orbit at an appropriate altitude (see below). Once established in orbit, it must first be opened (Deploy Scanner), then the scan can be performed (Perform orbital survey). The scan is a once per body operation, and only takes a few seconds. The data acquired by the scanner is automatically transmitted, and it is the transmission which uses the large quantity of electricity. The scan result can be viewed in map mode (default M key) while controlling the scanner satellite, or from the KSC Tracking Station. To view the results in map mode, right-click on the scanner while it is deployed and select Toggle Overlay. To view the results from the Tracking Station, select the orbital body and then click on the Resources icon on the right hand side of the window. The deployed scanner can be retracted by clicking on the Retract Scanner option.

There are options to change the data presentation. You can modify the display cutoff value (the higher the value, the richer the deposit) and the results' color and style. You cannot change these parameters from map mode. Retracting the scanner will hide the results until the scanner is re-deployed and the overlay is toggled again.

After using this scanner, it is possible to start resource extraction based on its results alone, but the best results will be achieved by using the scan results as the basis for performing detailed, targeted scans with the high resolution scanners:

Scanning altitude

Celestial body Radius Altitude
Min. Max.
Kerbol 261.6 Mm N/A N/A
Moho 250 km 25 km 1.25 Mm
Eve 700 km 70 km 1.5 Mm
Gilly 13 km 25 km 65 km
Kerbin 600 km 60 km 1.5 Mm
Mun 200 km 25 km 1000 km
Minmus 60 km 25 km 300 km
Duna 320 km 32 km 1.5 Mm
Ike 130 km 25 km 650 km
Dres 138 km 25 km 690 km
Jool 6 Mm 600 km 1.5 Mm
Laythe 500 km 50 km 1.5 Mm
Vall 300 km 30 km 1.5 Mm
Tylo 600 km 60 km 1.5 Mm
Bop 65 km 25 km 325 km
Pol 44 km 25 km 220 km
Eeloo 210 km 25 km 1.05 Mm

The scanner has a minimum and maximum scanning altitude based on the radius of the body it is scanning:

  • The minimum altitude is one-tenth of the body radius or 25 km, whichever is higher.
  • The maximum altitude is five times the body radius or 1.5 Mm, whichever is lower.

Power and time required

Body Kerbol Kerbin Mun Minmus Moho Eve Duna Ike Jool Laythe Vall Bop Tylo Gilly Pol Dres Eeloo
Mits 123 42 15 51 141 66 27 1200 102 63 15 123 3 9 30 45
Communotron 16 738 252 90 306 846 396 162 7200 612 378 90 738 18 54 180 270
37 13 5 15 42 20 8 360 31 19 5 37 1 3 9 14
Communotron 16-S 738 252 90 306 846 396 162 7200 612 378 90 738 18 54 180 270
37 13 5 15 42 20 8 360 31 19 5 37 1 3 9 14
Communotron DTS-M1 738 252 90 306 846 396 162 7200 612 378 90 738 18 54 180 270
22 7 3 9 25 12 5 210 18 11 3 22 1 2 5 8
Communotron HG-55 820 280 100 340 940 440 180 8004 680 420 100 820 20 60 200 300
6 2 1 3 7 3 1 60 5 3 1 6 0 0 2 2
Communotron 88-88 1230 420 150 510 1410 660 270 12000 1020 630 150 1230 30 90 300 450
6 2 1 3 7 3 1 60 5 3 1 6 0 0 2 2
HG-5 High Gain Antenna 1107 378 135 459 1269 594 243 10800 918 567 135 1107 27 81 270 405
22 7 3 9 25 12 5 210 18 11 3 22 1 2 5 8
RA-2 Relay Antenna 2952 1008 360 1224 3384 1584 648 28800 2448 1512 360 2952 72 216 720 1080
43 15 5 18 49 23 9 420 36 22 5 43 1 3 10 16
RA-15 Relay Antenna 1476 504 180 612 1692 792 324 14400 1224 756 180 1476 36 108 360 540
22 7 3 9 25 12 5 210 18 11 3 22 1 2 5 8
RA-100 Relay Antenna 738 252 90 306 846 396 162 7200 612 378 90 738 18 54 180 270
11 4 1 4 12 6 2 105 9 6 1 11 0 1 3 4


Changes

1.0
  • Initial release