Difference between revisions of "Reaction Control System"

From Kerbal Space Program Wiki
Jump to: navigation, search
m (*reflect changes in SAS; +links; *there are more tanks now;)
m (*moved text from the RCS thruster block article to here;)
Line 1: Line 1:
 
The '''Reaction Control System''', mostly just called '''RCS''', is a set of [[monopropellant]]-fuelled small thrusters primarily intended for orienting vessels in vacuum. It is toggled on and off by pressing the R key (default key binding). In order to use RCS, a dedicated RCS fuel tank along with some RCS thrusters are needed. The fuel tanks for RCS are different from solid or liquid fuels tank, and currently come in five options, one for each [[Radial size|radius]], and two side-mounted types.
 
The '''Reaction Control System''', mostly just called '''RCS''', is a set of [[monopropellant]]-fuelled small thrusters primarily intended for orienting vessels in vacuum. It is toggled on and off by pressing the R key (default key binding). In order to use RCS, a dedicated RCS fuel tank along with some RCS thrusters are needed. The fuel tanks for RCS are different from solid or liquid fuels tank, and currently come in five options, one for each [[Radial size|radius]], and two side-mounted types.
  
The thrusters can be located anywhere on a ship. Unlike [[jet engine|jet]] and [[liquid fuel engine]]s, there is no need to place RCS thrusters on RCS fuel tanks or manually run fuel lines to them. The thruster block can provide full rotation control, whereas the linear port can only provide thrust in one direction. It is advisable to place the thrusters as far away from your centre of mass as possible, thus maximising the torque (turning force) they generate. It is typically most practical to place them with four way symmetry as this can provide the best control. In theory, you can provide suitable roll, pitch and yaw control with just one set of four way thruster blocks. Translation manoeuvres however are much easier with one set at the top and another one at the bottom of your rocket. Activating the [[SAS]] will prevent unintentional changes of heading during translation movement.
+
It should also be noted that the SAS system will make use of the thrusters. To avoid a constant drain of RCS fuel, it is recommended to not have both the RCS and the SAS systems enabled at the same time, unless you need to keep your ship dead level and/or have RCS fuel to spare.
  
It should also be noted that the SAS system will make use of the thrusters. To avoid a constant drain of RCS fuel, it is recommended to not have both the RCS and the SAS systems enabled at the same time, unless you need to keep your ship dead level and/or have RCS fuel to spare.
+
In real life it's the system used to control the [[attitude]] of a spacecraft rather than its orbital velocity.
 +
 
 +
== Placement ==
 +
The thrusters can be located anywhere on a ship. Unlike [[jet engine|jet]] and [[liquid fuel engine]]s, there is no need to place RCS thrusters on RCS fuel tanks or manually run fuel lines to them. The thruster block can provide full rotation control, whereas the linear port can only provide thrust in one direction. It is advisable to place the thrusters as far away from your centre of mass as possible, thus maximising the torque (turning force) they generate.
 +
 
 +
It is typically most practical to place them with four way symmetry as this can provide the best control. In theory, you can provide suitable roll, pitch and yaw control with just one set of four way thruster blocks. Translation manoeuvres however are much easier when the thrusters for one direction are evenly distributed on both sides of the center of mass so they don't apply torque. This is usually accomplished with one set at the top and another one at the bottom of your rocket. The [[SAS]] may dampen unintentional changes of heading during translation movement.
 +
 
 +
Beware, they will be fatally damaged if they brush against the ground.
  
== Fuel ==
+
== Fuel =={{Stats Table RCS Fuel}}
{{RCSFuel}}
 
  
 
== Thrusters ==
 
== Thrusters ==
 
{{Stats Table RCS Thrusters}}
 
{{Stats Table RCS Thrusters}}

Revision as of 16:52, 30 July 2013

The Reaction Control System, mostly just called RCS, is a set of monopropellant-fuelled small thrusters primarily intended for orienting vessels in vacuum. It is toggled on and off by pressing the R key (default key binding). In order to use RCS, a dedicated RCS fuel tank along with some RCS thrusters are needed. The fuel tanks for RCS are different from solid or liquid fuels tank, and currently come in five options, one for each radius, and two side-mounted types.

It should also be noted that the SAS system will make use of the thrusters. To avoid a constant drain of RCS fuel, it is recommended to not have both the RCS and the SAS systems enabled at the same time, unless you need to keep your ship dead level and/or have RCS fuel to spare.

In real life it's the system used to control the attitude of a spacecraft rather than its orbital velocity.

Placement

The thrusters can be located anywhere on a ship. Unlike jet and liquid fuel engines, there is no need to place RCS thrusters on RCS fuel tanks or manually run fuel lines to them. The thruster block can provide full rotation control, whereas the linear port can only provide thrust in one direction. It is advisable to place the thrusters as far away from your centre of mass as possible, thus maximising the torque (turning force) they generate.

It is typically most practical to place them with four way symmetry as this can provide the best control. In theory, you can provide suitable roll, pitch and yaw control with just one set of four way thruster blocks. Translation manoeuvres however are much easier when the thrusters for one direction are evenly distributed on both sides of the center of mass so they don't apply torque. This is usually accomplished with one set at the top and another one at the bottom of your rocket. The SAS may dampen unintentional changes of heading during translation movement.

Beware, they will be fatally damaged if they brush against the ground.

Fuel

RCS Fuel Density is 4 kg/unit Mass
(t)
Monopropellant
(Units of fuel)
Image Part Radial size Cost
(Funds)
Full Empty Max. Temp.
(K)
Tolerance
(m/s)
Tolerance
(g)
FL-R10.png
FL-R20 RCS Fuel Tank Tiny 200
(176)
0.10 0.02 2 000 12 50 20
FL-R25 FT.png
FL-R120 RCS Fuel Tank Small 330
(186)
0.56 0.08 2 000 12 50 120
FL-R1 Yellow.png
FL-R750 RCS Fuel Tank Large 1 800
(900)
3.4 0.4 2 000 12 50 750
Mk2 Monopropellant Tank.png
Mk2 Monopropellant Tank Mk2 750
(270)
1.89 0.29 2 500 50 50 400
Mk3 Monopropellant Tank.png
Mk3 Monopropellant Tank Mk3 5 040
(2 520)
9.8 1.4 2 700 50 50 2 100
Stratus-v roundified monopropellant tank.png
Stratus-V Roundified Monopropellant Tank X 200
(176)
0.10 0.02 2 000 12 50 20
Stratus-V Cylindrified.png
Stratus-V Cylindrified Monopropellant Tank X 250
(190)
0.23 0.03 2 000 12 50 50


Thrusters

Image Part Radial size Cost
(Funds)
Mass
(t)
Max. Temp.
(K)
Tolerance
(m/s)
Tolerance
(g)
Thrust
(kN)
Fuel
(Units of fuel/s)
Isp (s) (atm) Isp (s) (vac)
RV-1X.png
RV-1X Variable Thruster Block Radial mounted 30 0.005 1 500 12 50 0.1 0.01 100 240
PlaceAnywhere1.png
Place Anywhere 1 Linear RCS Port Radial mounted 15 0.001 1 500 12 50 0.2 0.02 100 240
RV-105.png
RV-105 RCS Thruster Block Radial mounted 45 0.04 1 500 15 50 1.0 0.11 100 240
Linear RCS.png
Place-Anywhere 7 Linear RCS Port Radial mounted 25 0.02 2 600 15 50 2.0 0.21 100 240
Vernor.png
Vernor Engine[Note 1] Radial mounted 150 0.08 2 000 15 50 12.0 0.94 140 260
  1. The Vernor Engine uses a liquid fuel/oxidizer mixture.