Tutorial:Intermediate Rocket Design/fr

From Kerbal Space Program Wiki
< Tutorial:Intermediate Rocket Design
Revision as of 02:34, 8 April 2014 by Onco p53 (talk | contribs) (clean up formatting)
Jump to: navigation, search

Physique

Avant d'entrer dans les détails, quelques faits de physique. À savoir, le centre de gravité, le point d'action et comment ils influent.

Centre de gravité, point d'action et influence de la symétrie nécessaire à votre fusée.

Le centre de gravité est un point dans votre fusée où elle est en parfait équilibre. C'est le point où, si la fusée reposait sur ​​ce celui-ci, vous pourriez lui donner un coup de pouce qu'elle suivrait librement sans que la gravité ai son mot à dire, parce qu'à gauche, à droite, en haut, en bas, devant et derrière, tout a la même masse de façon parfaitement équilibrée sur ce seul point. C'est toujours un point unique dans l'espace, et même si vous avez une fusée de forme très étrange, ce point est quelque part à l'intérieur de votre fusée. Malheureusement, ce point n'est généralement pas le point d'action, c'est à dire le point où vos moteurs créent une poussée. Si c'était le cas, les déplacements seraient doux, puisque nous pourions pousser la fusée où et comment nous le souhaiterions (en ignorant la résistance de l'air, bien sûr).

Donc la meilleure chose que nous pouvons faire est de mettre ce point d'action "derrière" le centre de gravité et le point de son vecteur d'action vers le centre de gravité. Ou, plus simplement, mettre le moteur derrière la masse et la poussée dans la direction opposée. Ce qui semble évident au premier abord possède quelques prérequis. Premièrement, votre point d'action, autrement dit la somme vectorielle de vos vecteurs de poussée, pour vous autres tatillons, doit être aligné avec le centre de gravité. En d'autres termes, votre fusée doit être symétrique pour être stable. Vous pouvez essayer par vous-même. Prenez un balai. Mettez l'extrémité du manche sur votre main, avec la brosse en l'air, et vous remarquerez que vous pouvez le balancer. Vous remarquerez également deux choses: premièrement, il est facile de le balancer à partir du moment ou vous restez concentré dessus, et il peut très facilement basculer sur le côté, et si c'est le cas il tombe RAPIDEMENT. Et deuxièmement, il est étonnamment plus facile de balancer le balai avec la brosse vers le plafond plutôt que de l'avoir posé sur votre main.

Si vous souhaitez maintenant mettre beaucoup de pression sur ce manche, vous pourriez pousser ce balai vers le haut sans qu'il ne tombe sur le côté (croyez-moi, cela fonctionnerait). C'est essentiellement le fonctionnement de notre fusée. Maintenant attachez quelque chose sur le côté du balai et regardez comment vous vous en sortez. Si vous essayez d'équilibrer le balai de la même façon, il va tomber sur le côté où vous y avez accroché quelque chose. Sauf si vous le maintenez à un angle de l'autre côté... ce qui serait étrange si c'était une fusée, n'est-ce pas ? Si vous souhaitez pousser ce balai vers le haut, il ne serait pas seulement tombé sur le côté, il aurait commencé à tourner autour de l'axe des x et fait des "vrilles"... ou se serait écrasé, ce qui est plus probable puisque que la gravité joue aussi bien son rôle dans ce jeu. Donc la première chose à garder à l'esprit est de garder votre fusée symétrique, au moins au point où le centre de gravité est toujours au-dessus du point combinée d'action (si vous avez plus d'un moteur, vous avez plus d'un point d'action, qui peut se résumer à un total de points d'action et un vecteur d'action). En termes physiques, ce point d'action doit être aligné avec le centre de gravité, avec son vecteur aligné avec l'axe hypothétique qui existe entre le centre de gravité et le point d'action. En termes plus simples, le point où votre fusée serait en équilibre doit être derrière le point où la force combinée des moteurs pousse, et les moteurs doivent pousser vers ce centre de gravité, c'est à dire les échappements de poussée doivent s'en éloigner....

Cela signifie aussi que les poussées "intérieures" stabilisent la fusée, aussi longtemps que la poussée est égale de tous les côtés. Cela oblige la fusée à rester dans sa direction actuelle, mais cela signifie aussi que vous perdez du carburant puisque vos moteurs poussent l'un "contre" l'autre. Pensez-y comme le frottement des roues de direction des voitures.

Masse vs. poids

Votre poids est directement lié à votre masse. Maintenant, strictement parlant, le poids est défini comme la force d'un objet en fonction de la gravité. Mais la gravité tire chaque point de la masse de votre fusée avec la même force, rendant l'accélération uniforme dans l'ensemble du vaisseau. Dans l'espace, ne tournant pas et ayant les moteurs coupés, aucune autre force n'agit, c'est donc le concept de l’apesanteur. Je ne suis pas certain que ce soit une bonne analogie, mais imaginez que vous êtes dans un avion réellement stable, volant à altitude et à vitesse constante. Vous ne vous rendez pas compte si vous avancez. Même chose avec la gravité, excepté que vous ne vous rendez pas compte si vous accélérez.

Ce qui est perçu comme le poids est causé par d'autres forces, tel que la friction d'une atmosphère, la poussé de vos moteurs ou la force de contact lors du décollage. Considérant une piste de décollage plane, la force de contact est exactement la même que la gravité mais opposée, sinon vous ne décollerez pas. La gravité vous retient au sol, la force de contact est le sol vous poussant vers le haut. Mais elle n'agit pas uniformément sur chaque point de masse comme la gravité le fait, c'est seulement le sol qui pousse le bas du vaisseau, alors la force doit être répartie à travers les éléments structurels du vaisseau, et ce qui est perçu comme le poids. Même chose avec la poussée, ou les forces aérodynamiques.

Mais même si vous êtes en apesanteur, vous n'êtes pas sans masse.

Pour couper court aux problèmes théoriques, plus vous êtes lourds, plus vous devez dépenser de l'énergie pour changer de vitesse et de direction. Plus votre fusée est massive, plus vous devrez consommer de carburant pour la rendre rapide (ou plus lente !). Dans ce jeu également, comme quand vous êtes surchargés, la physique joue contre vous.

Cela signifie aussi qu'une masse devient "plus lourde" si elle est lancée à plus grande vitesse. Plus de vitesse n'augmente pas votre masse (à moins d'approcher la vitesse de la lumière, mais ignorons cela pour le moment), mais la tension (perçue comme le poids) augmente avec la masse. Cela s'appelle la force G. Sur Kerbin, nous ressentons 1G. (1G est défini comme l'accélération égale à la gravité au niveau de la surface de Kerbin qui est environ de 9.81 m/s²).

Comment cela affecte votre fusée ? Bien, cela l'affecte doublement. Premièrement, plus vous avez de masse, plus vous devrez consommer de carburant pour mettre cette masse en orbite. C'est pourquoi plus grand ne signifie pas toujours meilleur. Nous détaillerons cela en détail plus tard. Le 2ème facteur est que plus vous accélérez votre fusée, plus vous mettez de tension sur ses éléments. Certains éléments sont capable de supporter cette tension. D'autre pas. C'est, en général, plus facile de construire une fusée à élévation lente plutôt qu'une qui passe en orbite à 9G ou plus, pas seulement parce que les passagers n'aime pas vraiment avoir un camion assis sur leur thorax (ce qui n'est pas vraiment un problème en soit), maintenant le problème est principalement que l'accélération appliquée à la fusée force sur les éléments qui les maintiennent unis jusqu'à leur limite de rupture. Ce qui signifie que vous devez ajouter des renforts (entretoises), qui ajoutent de la masse, qui consomment plus de carburant.

Thrust-weight ratio

Basically, it's the result of dividing your thrust (in newtons) by your weight (in kilograms times acceleration, i.e. kg*m/s², so... well, also in newtons). Thrust is what gets you up, weight is what keeps you down. And if thrust > weight, i.e. if your thrust-weight ratio is more than 1, you go up. If thrust < weight, you can put your engines into overdrive and you won't move an inch. For the record, the Saturn V first stage rocket engine had a TWR of 94.1. In other words, it could have lifted itself over 94 times. Beat that!

What does that mean for our space vehicle? Basically, it means that whatever we put as rockets behind our craft, it has to overcome the total weight of the craft. Which also means that, if you have multiple stages, the upper stages are just dead weight at start. Yes, yes, there are rockets in there and they might have a lot of punch, but they do not add to the thrust at start. Thrust is always only the thrust you ACTUALLY apply, not the thrust your rocket can eventually do in total.

Note that every rocket engine has a TWR of more than one. By definition. Engines below a TWR of 1 need some kind of aerodynamics on the craft to get it off the ground. The question is, though, whether the dead weight sitting on top of it STILL keeps that equation above 1. The F1's 94.1 TWR doesn't mean that the Apollo craft got shot into orbit at 100g. It means that there was a friggin' HUGE rocket sitting on top of that engine and hence it could barely get the whole behemoth up into an orbit!

My guess is that Kerbin has a gravity of about 10 m/s² (much like earth), meaning that a rocket engine rated at 200 max thrust (like the non-gimballed stock engine) can lift 20 units of mass (or 8 stock liquid fuel tanks). Given that a rocket of 1 stock command center, 7 fuel tanks and 1 engine (totalling a mass of 20.5, 7*2.5+2+1) can't get off the ground but with 6 fuel tanks it can, I'd say that should be about right. So when building your rocket, always add up the mass of the parts you assembled, multiply by 10, then divide by the thrust of the engines, but ONLY the engines that actually thrust. The more you get out of that, the faster your rocket will climb. Considering that engines seem to overheat more readily if they're operated at the TWR limit, try to get to a TWR of at least 1.7 in your first stage. My Mun rocket has a first stage TWR of 2.2, which is plenty but not overdoing it to the point where the g-forces become unmanageable.

Also, keep in mind that you will use up fuel as you climb. Your fuel tanks will get emptier with every second your engine fires, making them lighter, meaning, less weight has to be lifted. Plus, gravity decreases with distance squared, which also makes the pull of Kerbin less and less with every inch you climb. Not as much as one would wish, though.

Staging, and when to do it

Staging usually means tossing dead weight. You jettison spent rocket parts to make your craft lighter. Less mass means less energy required to move the rest of the mass. The obvious choice would now be to stage as much as possible, to carry around as little dead weight as possible. This is not the best strategy, though.

Staging also means that you have to carry around the weight for the staging equipment and, in case of a liquid fuel set, another liquid engine. A spent stock booster weighs 0.36. The equipment to jettison it weighs 0.4. A spent liquid tank weighs 0.3. The additional engine and the staging equipment to toss it weighs 2.8.

A compromise has to be found. There is no hard limit to tell when to stage and when not to, what matters is how long you'd have to haul around the dead weight (if it's just a few seconds between the booster's end of life and until the other engine of this stage burns out, just keep the booster attached, it's not worth the extra weight for another set of staging couplers. If it's for the rest of the flight, tossing it pays off easily), whether the spent stage prevents you from firing the next (a lower stage burned up covering an upper stage has to be jettisoned, of course) and what the stage is used for (an upper stage is usually in use longer than a stage to reach orbit that is burning at max power constantly, i.e. a fuel tank in upper stages lasts much, much longer). I find the sweet spot for liquid tanks to be around 4-5 for lower stages and about 2 for upper stages.

As much thrust as possible to the bottom

Also easy to see, the more thrust you apply right from the start, the less dead weight you carry around. It's usually quite pointless to have a lot of thrust further up if you cannot get off the launch pad. On the other hand, as mentioned above, the more thrust you put behind your crate, the more g-force it has to endure and the more you stress your parts. Not to mention the air resistance which is of course worst lower in the atmosphere.

draaaaaaag

While we're at it, drag. I hope I got that one right, it's kinda hard to tell how that part really works. Basically, every part you add has air resistance. Doesn't matter once you're in orbit (and hence satellites rarely look streamlined), but it's a big issue until you hit that magical 70,000 meters. I still have very limited data on how drag really works and what affects what, so far all I can say is that it's there and that you should probably take it into account, i.e. creating insanely wide rockets to cram in a lot of boosters to fire at the same time might be a drag. Literally. Especially if you try to fly such a rocket at high speeds.

Note: Shape does not matter, only adding drag values (Unless you use Ferram Aerospace Research). This is why asparagus works. (I can't wait for a thousand years into the future, when people will see this and believe it's how asparagus works. Real asparagus)

Where do you need the most power?

That's a simple one again: From ground to orbit. You will NEVER in your flight have to spend as much energy as in that part of your flight. Getting from orbit to the Mun, landing on the Mun, getting back off the moon, flying back to Kerbin and landing there? Easily done with about 1/6th of the fuel spent to get into orbit. I am NOT kidding or exaggerating here. Remember that Saturn V rocket that sent Apollo to the moon? Remember how friggin' huge that thing was? And what a tiny little bit of it actually went to the moon, with the rest being tossed somewhere along the way? Of the total mass of the Saturn V on 2,800,000 kg, most of which was fuel, only 120,000 kg was used for TLI. It's the same here. You will spend a good 80% of fuel and dump about as much of your rocket before you reach the Mun.

Long or wide?

Preferably neither. Making your rocket longer is about as bad as making it wider. For various reasons. Wide rockets tend to be bottom-heavy (because, usually, they are wide at the bottom, to maximize thrust at liftoff), making them harder to control because they sway easily, and they are prone to out of control rolling if the thrusters on the outer edges are not PERFECTLY aligned (which they are, well, never), due to leverage. Also, I'd expect them to be very susceptible to drag, meaning a lot of power is lost due to air resistance. Wide rockets usually need quite a bit of SAS to keep from spinning out of control. And they are prone to "flipping", i.e. uncontrollably going upside down because they are easy to tilt and bank. Think of the broom example at the beginning.

Long rockets are very hard to tilt and bank, making them hard to steer and very sluggish. They also usually suffer from top-heaviness, especially after a good deal of their lower stage fuel is spent, which can result in rockets that are very hard to control and to keep from going "keel-up", i.e. nose-down without a lot of RCS thrust. Long rockets usually need quite a few wings to keep them manageable and responsive. And even then they are very slow to react and need foresightful piloting. They usually keep their direction pretty well as long as they are balanced and there's a lot of thrust applied, but once you bank and tilt them, they can very easily oversteer, especially in horizontal flight with a center of mass that's very close to the top (as it is usually just before your ascent stage is burned up, with a lot of empty and near empty fuel tanks hanging on your tail). Still, I prefer long over wide rockets.

So, with all that, what IS now the best design?

From these tidbits we can puzzle together a few cornerstones that give us a good idea what a GOOD design would be, and what would be a BAD one.

It's a good idea to put every engine that can actually thrust at launch to work right at launch. Otherwise, they're dead weight that must be hauled upwards before it can be used. If that gives you too much thrust and your rocket starts to fall apart due to excessive G forces, consider putting the throttle to 75% or so. Remember, it is highly inefficient to go faster than 200 meters per second below 10,000 meters. Once your rocket has cleared the thickest portion of the atmosphere you can try bringing the throttle up to full. But if you have a big rocket, it CAN be a very good idea to make the first stage(s) only of solid boosters, they're very light for their push and even with a coupler on them they have a better TWR than liquid engines. Their main drawback, the inability to control their thrust output, doesn't matter for the first 20,000 Meters since you actually just want to get the hell up there. Do not expect too much from that, a full complement of two solid-only stages underneath every single engine of my actual first stage only got me about half a fuel tank. Yes, half a stock fuel tank is all you get for slapping two rows of solid stages under your rocket. The diminishing returns are stunning!

While solid boosters can be appealing, they prevent you from using the highly efficient "asparagus" stage design. The idea behind the asparagus design is that instead of burning through multiple fuel tanks simultaneously, two fuel tanks stacks are drained at a time. This saves weight because it greatly reduces the fuel mass to tank mass ratio after you have dropped your first two tank stacks. See the thumbnail for details.

A look at the efficiency of various lower stage designs. All were tested using identical Mechjeb settings, but the amount of fuel necessary to get each design into orbit varies greatly.

With bigger rockets, you'll run into the need to add SAS to keep them manageable. Only one ASAS module gives you any benefits, so placing more does nothing but weigh down your rocket unnecessarily. The key difference between SAS and ASAS is, as the description says, that ASAS is more like an autopilot, SAS is more like a gyroscope. In other words, if the rocket is uncontrollable, ASAS cannot control it either. If you have wings (recommended on large rockets), you might even be able to forgo the normal SAS modules.

Your rocket should get thinner as it progresses upwards. From afar, it should look like a teardrop or a very steep pyramid, with multiple radial stages around the bottom stage thinning out to a single top stage. Top-heavy rockets are usually very hard to control, since their center of gravity is far from the point of action. The further away, the bigger the lever, the more wings and other control tidbits you need to keep it upright.

You need most of your fuel on your way up. Once you're in orbit, even the trans-lunar shot is peanuts compared to the expense to get into an orbit. It's quite ok to create an unwieldy, but powerful lower stage and create a very manageable and precisely controllable stage for upper orbit that has rather little fuel compared to it. Try different designs here, it's alright to have zero control beyond keeping the nose pointed upwards for the first 20,000 or even 40,000 Meters of its trip.