Difference between revisions of "Tutorial: Walkthrough for Ye Compleat Beginner/ko"

From Kerbal Space Program Wiki
Jump to: navigation, search
m (Step 4 - A Good Launch)
m (1단계 - Kerbal Space Program 시작하기)
Line 14: Line 14:
 
    
 
    
  
===1단계 - Kerbal Space Program 시작하기===
+
===1단계 - 커발 스페이스 프로그램 시작하기===
 
당연하게도 게임을 진행하기 위해서는 우선 KSP를 시작하는 것이 첫 단계겠죠. 각오를 단단히 하세요, KSP는 구동하는데 제법 오랜 시간이 걸린답니다. 화면 좌측 하단 모서리의 노란 점<sub>(우주 테이프를 푸는 중, 재치있는 구동 힌트 발명중, 스프링 시험중 따위의 귀여운 문구를 가장한)</sub>은 기나긴 진행막대의 시작이랍니다. PC 사양에 따라 1~3분 정도 소요됩니다.
 
당연하게도 게임을 진행하기 위해서는 우선 KSP를 시작하는 것이 첫 단계겠죠. 각오를 단단히 하세요, KSP는 구동하는데 제법 오랜 시간이 걸린답니다. 화면 좌측 하단 모서리의 노란 점<sub>(우주 테이프를 푸는 중, 재치있는 구동 힌트 발명중, 스프링 시험중 따위의 귀여운 문구를 가장한)</sub>은 기나긴 진행막대의 시작이랍니다. PC 사양에 따라 1~3분 정도 소요됩니다.
  

Revision as of 05:46, 11 October 2014

신참을 위한 길라잡이

KSP를 해 본 적 없으시다구요? 요상한 단어와 조작법 그리고 거지같은 수학 때문에 혼란스러우시다구요? 이 입문서를 따라오시면 최초의 두 로켓을 발사하는데 필요한 모든 절차를 숙지할 수 있습니다.


상기(詳記)

  • 소요시간: 5–30 분
  • 난이도: 쉬움
  • 버전: 전 버전

첫 발사

이 글을 읽고나면 게임을 시작하고, 로켓을 고르고, 발사하고, 지구 아니 커빈으로 안전하게 귀환할 수 있을 것입니다. 그리하면 세명의 무모한 우주비행사를 공전 궤도에 올려놓게 될 것입니다, 아마도 영원히...


1단계 - 커발 스페이스 프로그램 시작하기

당연하게도 게임을 진행하기 위해서는 우선 KSP를 시작하는 것이 첫 단계겠죠. 각오를 단단히 하세요, KSP는 구동하는데 제법 오랜 시간이 걸린답니다. 화면 좌측 하단 모서리의 노란 점(우주 테이프를 푸는 중, 재치있는 구동 힌트 발명중, 스프링 시험중 따위의 귀여운 문구를 가장한)은 기나긴 진행막대의 시작이랍니다. PC 사양에 따라 1~3분 정도 소요됩니다.

  • 시작하기(Start Game)를 선택하세요. (원한다면 곧바로 시작하지 않고, 설정변경(Settings)으로 살짝 돌아가 조작단추(Key bindings)를 변경하는 일을 해도 되죠. 다만, 그리하면 기본 조작단추(Key bindings)를 기준으로 작성한 이 문서와 여타 입문서들에서 약간 복잡한 상황에 직면하게 될 수 있답니다.)
  • 새로시작하기(Start New)를 선택하세요.
  • 이름 혹은 별명을 입력하세요.
  • 샌드박스(Sandbox)를 선택하세요. (커리어(Career) 말고...)
  • 시작(Start) 선택하세요.

다음에 시작할 때는 새로시작하기 대신 불러오기(Resume Saved)를 선택하세요. 전에 저장한 게임을 불러와서 진행하게 됩니다.

2단계 - 발사대로~!!!

자, 이제 멋드러진 커발 우주단지의 전경이 보일겁니다. 게임내에서 이미 만들어진 기성 로켓을 바로 쏴 볼건데요. 화면 상단 오른쪽에 있는 '발사대(launch pad)'를 클릭해 보세요. 발사대를 선택했었다는 걸 이미 눈치 챘었죠? 화면 하단 왼쪽에 발사대라고 떡하니 나오니까 말이죠. 커발 2[Kerbal 2 (Stock)]를 선택하세요. 스톡(Stock)이라는 이름이 붙어 있는 것은 게임에서 미리 만들어져 있던 로켓이라는 뜻이랍니다. 추후에 자신만의 로켓을 만들면, 요 목록에 나타나게 되죠. 화면 상단 우측의 발사(Launch) 단추를 누르세요.

자, 이제 발사대에 놓여있는 땅딸막한 로켓을 볼 수 있습니다. 자, 거의 다 왔어요~! 그 전에 몇가지 기초적인 작업을 배워둘까요. 마우스 오른쪽 버튼을 누르고 움직여 카메라 시점을 변경해보세요. 숫자 키패드에 있는 +-로 확대도 해보고 축소도 해보세요. 마우스에 휠이 달린 것이면, 같은 기능을 합니다. 여러분의 귀염둥이(?) 커보너츠(Kerbonauts; 커벌 우주비행사) 세마리가 화면 하단 오른쪽에서 발사 준비가 되어 있다고 하는군요. 로켓을 한번 둘러봅시다. 세개의 가냘픈(?) 지지대는 로켓의 부품은 아닙니다. 로켓을 고정시켜주는 지지 구조물이랍니다.

3 단계 - 첫번째 발사 중단

스페이스를 누르세요. 로켓이 그냥 땅으로 떨어지고... 아무일도 없군요. 어찌 된 걸까요? 모든 로켓 발사는 발사 단계 혹은 비행 단계(Stages)에 따라 진행되며, 각 단계의 진행은 스페이스를 눌러 합니다. 커발 2 로켓 (Kerbal 2 rocket)은 3단계로 구성되어 있습니다. 첫번째 단계에서는 로켓 엔진을 점화하고 지지대를 분리하죠. 어쨌거나, 현재 엔진의 출력은 0%네요. 출력 높이는 걸 깜빡했군요. 자, 그럼 문제를 고치고 다시 도전해봅시다.

4 단계 - 발사 성공!!!

Esc 로 게임을 잠시 멈추세요. 비행 되돌리기(Revert Flight)를 선택해 발사 되돌리기를 해보죠. 이것은 시간을 되돌려서 발사 과정의 초기로 돌아갈 수 있답니다. 왼쪽 시프트를 몇초간 눌러주세요. 출력을 증가시켜 100%가 되도록 합니다. 완료가 됐다면, 스페이스를 누르세요. 자, 드디어 로켓이 발사되었군요!

대략 5초후 (고도 1500미터 정도), 로켓의 연료가 다 떨어집니다. 스페이스를 눌러 다음 비행 단계(Stage)로 진�행합시다. 폭발식 연결나사가 터지며 큰 소리가 나는 걸 들을 수 있는데, 뭐 별다른 일은 없으니 안심하세요. ASDW을 눌러 보세요. 캡슐이 연료가 떨어진 부스터 엔진으로 부터 멀어져야 합니다. 뭐 돈드는거 아닙니다.

이제 세번째로 스페이스를 눌러 낙하산을 펼치세요. 고도에 따라서는 낙하산이 완전히 펼쳐지기도 하고 반만 펼쳐지기도 한답니다. 지상으로 부터 500미터 정도되면 자동으로 펼쳐지게 됩니다. (이때 500미터는 해수면 높이가 아니라 지상으로부터의 높이랍니다)


매의 눈(?)으로 카메라를 돌려(마우스 오른쪽 버튼을 누른채) 주위를 둘러보면, 부스터 로켓이 땅으로 추락해 산산히 부숴지는 것도 볼 수 있을 거예요. (만약 연료가 남아있다면, 폭발하기도 하죠.)

캡슐과 우리의 귀염둥이 커보너츠 세마리는 지면(약 68미터; 우주단지가 있는 지표의 고도)에 부드럽게 착지할 때까지 자유낙하를 하게 됩니다. 착지하면 낙하산은 자동으로 사라지죠. 화면 상단 중앙 위쪽으로 마우스를 가져가면 나타나는 기체 회수(Recover Vessel)라는 녹색 표식을 누르세요. 완료!!! 준궤도 처녀 비행을 축하합니다!!!

Your Second Launch: Getting Into Orbit

Can't you just aim straight up to get into orbit? Alas, no. Even with a bigger rocket, you can't just aim at the sky and hope for the best. Achieving orbit requires a simple, but important, maneuver. Let's start by selecting a bigger rocket.

Step 1 - Choose a Bigger Rocket

Return to the Kerbal Space Center, choose the Launch Pad, and select the Kerbal X (Stock) premade rocket, then click the green Launch button. This is a much taller, multi-stage rocket, with nine stages, numbered 0 through 8. It has a gantry support system holding it up, similar to the Kerbal 2. This will be important in a moment.

Step 2 - Launch

  • Tap T once to enable the onboard SAS stability system. This will keep your rocket from drifting off-course.
  • Hold Shift to throttle up to 100%, as before.
  • Tap Space once to fire the engines. The rocket will remain in place, held back by its gantry supports.
  • Quickly tap Space again to release the supports. We have liftoff!

Step 3 - Staging Multiple Engines

Notice that you have seven engines burning at once. The green status bars on the left of your screen show their relative fuel levels. They're not all the same. Some engines have smaller fuel tanks than the others, and will empty much sooner. We should jettison the empties as soon as possible to avoid carrying dead weight. Specifically, the two middle engines seem to be burning fuel the quickest. Watch those two bars, and when they're empty (probably around 600–700 meters up), tap Space once to trigger the next stage. The Kerbal X rocket is designed to jettison its two smallest engines at that stage. The remaining engines will keep burning.

The remaining five engines are also burning at different rates. When the bottom two fuel bars are empty, tap Space to jettison them.

You now have three engines, which are - yet again - burning at different rates. Watch and jettison the dead weight by tapping Space when appropriate.

Step 4 - Gravity Turn

You're somewhere around 6000 meters straight up, running on one engine. The planet Kerbin below you is starting to look curved. Look at the blue navball at the bottom of your screen. Click the green text above it to change it from Surface mode to Orbit mode.

When you get to about 10,000 m (don't sweat the exact number), start tapping the D key until the rocket tips over to the right at about a 45-degree angle. It looks unstable, but it will be fine. The navball will start to rotate and the gold V-marker in the center will get closer to yellow circle 'target' marker. Tap D occasionally as necessary to keep the two markers lined up and your rocket on target.

When you get to around 30,000 m and your fuel is about two-thirds spent, repeatedly press the left Ctrl key to throttle back to about 50% power. Press M to switch to Map view. Hold the right mouse button and move the mouse around until you can see the entire planet, including the pale blue arc that shows your rocket's trajectory. Note that this line goes up and back down—straight into the ground. Not good. We need to make a course correction.

Look for the blue marker along the blue trajectory line labeled Kerbin apoapsis. (Apoapsis, or apogee, is the high point of a spacecraft's orbit.) This will be the highest point on your journey if you remain on your present course and speed.

The navball probably isn't visible in your map view, so click the little arrow at the bottom of the screen to bring it up. Use your mouse to hover over the apoapsis marker. Watch as its altitude rises. When that number gets to 100,000 or so (keep it under 120,000), cut engines completely by pressing X.

(If you happen to run out of fuel before then, tap Space once to jettison the engine, then tap Space again to ignite the next engine).

You are now drifting, but your momentum is still carrying you upward—for a while. Notice that your controls (the A S D W keys) are very sluggish. That's the on-board inertial-stability system still working, even when the engine is off. Once you re-fire the engine, control will become much more snappy again. If you've got time, tap M to switch back to "normal" (staging) view and enjoy the view from near-space.

Step 5 - Achieving Orbit

With about 10 seconds to go before reaching the apoapsis marker, orient your rocket to point directly at the navball's yellow circle target marker, which is probably straddling the navball's blue/brown horizon line. Make sure you're not accidentally pointed at the green marker with the X through it; that's the reverse (retrograde) marker.

Throttle up to half speed again by pressing left Shift repeatedly. Watch carefully as the pale blue trajectory line stretches and grows. Eventually it will circle around the planet. Zoom out so you can see the whole planet. (If you notice your progress suddenly stops even though you're throttled-up, you probably just ran out of fuel. No problem; jettison the tank by tapping Space and fire the final-stage engine by tapping Space one more time.) Keep your spacecraft aimed at yellow circle marker on the navball, but get ready to cut the engine with X.

Poof! A blue periapsis marker will appear suddenly on far side of Kerbin. Use your mouse to hover over this new periapsis marker and watch it as its altitude rises quickly. When it reaches about 20,000 m or so, cut your engine with X. Hooray! You're now orbiting the planet Kerbin!

Step 6 - Avoiding the Atmosphere

There's just one problem: atmosphere. Kerbin's atmosphere extends to about 65,000 m, so any spacecraft orbiting below that altitude will pass through the air, slow down, and eventually burn up. We need to raise the low point (periapsis) to at least 70,000 m.

Keep yourself aimed at the circular yellow prograde marker on the navball, keep the engine on low throttle, and keep your mouse hovered over periapsis marker until it reads 70,000 or more. The two periapsis and apoapsis markers may start moving around planet like the hands on a clock while you're doing this. That's fine, and is due to the engine burn changing the shape of your orbit. When both periapsis and apoapsis are somewhere above 75,000, cut engines wth X.

Step 7 - Enjoy the View

You're golden. You will now orbit literally forever, with no input required from you whatsoever. That's the beauty of physics. You can speed up time by tapping > (actually the . key) and watch yourself orbit.

You can press M to revert to staging view and enjoy the view. If you're on the dark side of the planet (which you will be for half the time), it may be hard to see your spacecraft. You can speed up time in this view, too. Try out different viewing angles. Watch the sun rise over Kerbin.

Notice that, even though your engines are off, the ship is more maneuverable than it was before. That's because it's smaller. When you jettisoned the previous engine you lost about half of the total mass (weight) of the spacecraft, making it easier for the inertial-stability system to turn what's left.

To see the view from inside the space capsule, click the portrait of one of the Kerbonauts and select IVA (intra-vehicular activity). Do not click EVA! Right-click once and move your mouse around to look around inside the cockpit. Press C to return to normal outside view.

If you want to leave this craft in orbit and start over with another rocket and another spaceflight, just press Esc and choose Space Center. This flight will remain in orbit indefinitely until you choose to return to it another day. You can track its progress from the Space Center's Tracking Station at any time. Before long, you might have dozens of flights in progress all at once, and the Tracking Station allows you to jump in and control any of them at any time. Note that time doesn't stop when you're away from your spacecraft; they'll continue to orbit (or whatever they were doing) while you're commanding other missions. This will be important when you start doing two-craft rendezvous, or long-duration missions to other planets.

Extra credit

In space, speed and altitude are closely related. In orbit, your altitude determines your speed, and your speed determines your altitude. It's impossible to stay in your current orbit and go any faster or slower. You always orbit at exactly the "right" speed for that altitude. Speeding up won't make you go faster; it will push you into a higher orbit (farther from the planet). Likewise, slowing down will force you into a lower orbit (closer to the planet). There is no way to "chase" another spacecraft orbiting at the same altitude as you; you'll never catch each other.

Your orbit is likely not a perfect circle; more of an ellipse. That's fine, and often even preferred. You can adjust the "roundness" of your orbit by thrusting either prograde (forwards, in the direction of travel) or retrograde (backwards, against the direction of travel). Remember, there's no "steering" on a spacecraft. It doesn't matter what direction you're facing when you're drifting, only what direction your engine is pointed when it's firing.

As you orbit the planet you'll notice that your navball gradually rotates, making one complete spin for each full orbit. That's because the navball is designed to orient you in relation to the planet, not the sun or the stars or any fixed point in space. As you rotate around the planet, your position relative to it changes all the time, hence the motion of the navball.

The yellow circular marker on the navball marks prograde, or "straight ahead," in the sense of moving in the direction of your orbit. Because your orbit is circular and not a straight line, that marker always moves. Facing "ahead" on one side of the planet means facing "backwards" when you're on the opposite side.

If you want to speed up (thereby raising your orbital altitude), align your spacecraft's nose with the prograde marker and fire your engines. Aiming your spacecraft in any other direction will either tilt your orbit, speed you up, slow you down, or some combination of these.

Return from orbit and splashdown

When you're ready to return to Kerbin, you'll need to force your orbit to "decay" enough that you drop back into the planet's atmosphere. From there, the air will slow you down and cause you to drop to the surface, where your parachutes (you did remember to pack a parachute, right?) will ensure a soft landing. You'll need enough fuel to bring your periapsis down into the atmosphere, around 30,000m, to de-orbit. If you're completely out of fuel, you're out of luck and doomed to orbit Kerbin forever.

Assuming you do have adequate fuel, wait until you reach your apoapsis marker. Although you can de-orbit from anywhere, it's more fuel- and time-efficient to start your de-orbit burn from the highest point on your orbit: the apoapsis.

Make sure the navball is set to Orbit mode, not Surface mode. Turn so you're facing the retrograde marker on the navball (the green circle with the X through it), which is probably straddling the navball's blue/brown horizon line. It makes no difference whether the blue side or brown side is up, down, left or right; only that you are aligned with the retrograde, or "backwards," marker, which means you'll be firing the engine against the direction of travel.

Press M to switch to map view. As you approach the apoapsis (high point) marker, watch your periapsis (low point) marker. Throttle up gently (press Shift several times) and watch as periapsis drops as your speed slows. Keep the engine running until periapsis reaches 25,000 meters. This is well into Kerbin's atmosphere, so even though the blue trajectory line still shows you circling that planet, that won't actually happen. If you've got enough fuel, you can continue your retrograde burn until the trajectory line really does dead-end on surface of the planet instead of circling around it. Either way, you're going to land.

Now sit back and wait for your orbit to decay. (You can speed up time by repeatedly pressing > to hasten things along. The game will automatically revert to 1x time when your altitude drops to 70,00 meters and you begin to enter the atmosphere.)

Be sure to jettison your final engine! You don't want a fiery re-entry with all that fuel aboard. Tap the Space bar one last time to lose your only source of propulsion. You're in gravity's hands now. Your speed is probably around 2000–3000 m/s and increasing. You're falling—fast. For a proper NASA-style re-entry, you can orient your capsule back-end first by aiming at the retrograde marker on your navball. (It doesn't actually make any difference, but it looks cool.)

Somewhere around 30,000 m you'll notice that your speed is decreasing, not increasing. Even though you're still falling like a rock, the atmosphere is now slowing you down. Also at about 30,000 meters you'll start to see the reentry glow as your capsule heats up in the atmosphere. The glow dies away at about 18,000 meters, as your speed drops to about 1000 m/s. You're hurtling Kerbin-wards at a few hundred meters/sec, but slowing down due to atmospheric braking.

You'll need to open your parachute at some point. Parachutes in KSP are pretty flexible: you can open them at almost any altitude and they'll do their job. Obviously, you want to open it before you land, but not so early that it burns up during re-entry, and not so late that it doesn't slow you sufficiently. Somewhere after 10,000 meters but before 3000 meters is a good rule of thumb. Remember that your altimeter shows height above sea level, not ground level. If you're coming in over the mountains, be sure to mentally subtract a few thousand meters from your apparent altitude.

Go ahead and tap Space one last time to pop your parachute. It will deploy in the partially closed "drogue" mode and start slowing you down. When you are exactly 500 m above ground level, it will automatically open the rest of the way. If you pan your camera around, you might be able to see your jettisoned engine re-entering on its own, then exploding on the surface. Once your capsule has a safe splashdown/splatdown on water/land, you can click Recover Vessel (at the very top of the screen) to end the mission successfully.

(If you're on dry land and feel like showboating, click one of the Kerbonauts and select EVA to have him exit the capsule. You can walk him around using the directional keys, A S D W.)