From Kerbal Space Program Wiki
Jump to: navigation, search

Note: Several things are broken due to the {{Infobox/Body}} tag. These issues will be automatically fixed when this draft is transferred to the main page.

SpinkZeroZero as seen from orbit.
[[SpinkZeroZero/Param|SpinkZeroZero/Param]] of [[SpinkZeroZero/Param|SpinkZeroZero/Param]]
Orbital Characteristics
Semi-major axis 0 m [Note 1]
Apoapsis 0 m [Note 1]
Periapsis 0 m [Note 1]
Orbital eccentricity Expression error: Unrecognized punctuation character "[".
Orbital inclination Expression error: Unrecognized punctuation character "[". °
Argument of periapsis SpinkZeroZero/Param °
Longitude of the ascending node SpinkZeroZero/Param °
Mean anomaly Expression error: Unrecognized punctuation character "[". rad (at 0s UT)
Sidereal orbital period 0 s
Expression error: Unexpected < operator. Expression error: Unexpected < operator. Expression error: Unexpected < operator. Expression error: Unexpected < operator. s
Synodic orbital period 0.0 s
Orbital velocity 0 - 0 m/s
Physical Characteristics
Equatorial radius 0 m
Equatorial circumference 0 m
Surface area Expression error: Unexpected < operator. m2
Mass Expression error: Unexpected < operator. kg
Standard gravitational parameter Expression error: Unexpected < operator. m3/s2
Density Expression error: Unexpected < operator. kg/m3
Surface gravity Expression error: Unexpected < operator. m/s2 (Expression error: Unrecognized punctuation character "[". g)
Escape velocity 0.00 m/s
Sidereal rotation period Expression error: Unrecognized punctuation character "[". s
Expression error: Unrecognized punctuation character "[". Expression error: Unrecognized punctuation character "[". Expression error: Unrecognized punctuation character "[". Expression error: Unrecognized punctuation character "[". s
Sidereal rotational velocity Expression error: Unexpected < operator. m/s
Synchronous orbit 0.00 km
Sphere of influence Expression error: Unexpected < operator. m [Note 1]
Atmospheric Characteristics
Atmosphere present Expression error: Unrecognized punctuation character "[".

Expression error: Unrecognized punctuation character "[".

Scientific multiplier
Surface SpinkZeroZero/Param
Splashed SpinkZeroZero/Param

Expression error: Unrecognized punctuation character "[".

Near space SpinkZeroZero/Param
Outer space SpinkZeroZero/Param
Recovery SpinkZeroZero/Param

  1. 1.0 1.1 1.2 1.3 The distances are given from the bodies center, not from the surface (unlike ingame)

Eve is the second planet from Kerbol, the closest planet to Kerbin, and the analogue for the planet Venus. It has one small moon: a captured asteroid called Gilly. It has the highest surface gravity in . Second only to Jool in atmospheric height, density, and surface gravity, entering the atmosphere safely and returning from the surface are design challenges to behold.

In-game description

Eve is certainly the purplest object in the solar system. It's one of the larger, most visible objects, mainly because of its very, very purple tint.

It is considered by some to be an almost sister planet to Kerbin. Well, despite the purple, and the toxic atmosphere, and the extreme pressures and temperatures… Actually, it’s not very similar at all is it? Who are these people?

Kerbal Astronomical Society


Eve's terrain consists of rolling hills, large plateaus, purple sand dunes, and few, though tall, mountain ranges. These are speckled with small boulders, no doubt worn down by Eve's pressure, temperature, and wind. The surface is covered with craters and several oceans of unknown fluid.


Temperature and pressure of Eve's atmosphere as a function of altitude.
A comparison of the atmospheres of Eve and Kerbin

Eve has an extremely dense atmosphere with a mass of approximately 1.9×1017 kilograms, a sea level pressure of 506.625 kilopascals (5 atmospheres), and a depth of 90,000 meters. Compared to the atmosphere of Kerbin, Eve's atmosphere has 4 times the mass and 5 times the sea level pressure. At an altitude of 10,577 m on Eve, the atmospheric pressure is the same as at sea level on Kerbin (1 atm). The pressure at the top of Eve's highest mountain peak is 1.5 atm.

The average molecular weight of Eve air is 43 g/mol, and its adiabatic index is 1.20. Although the composition of Eve's atmosphere is unknown, these values suggest that it may consist largely of carbon dioxide. Another possibility is that the atmosphere is filled with ethane gas (C2H6, heat capacity of 1.2, molecular weight of 30 g/mol) and other compounds. If we assume LiquidFuel is kerosene, the joke that the lakes of Eve are LiquidFuel is strengthened by the purple colour since it is often mixed with a purple dye prior to sale. With a thick atmosphere filled with hydrocarbons, it is easy to imagine reactions that would yield compounds such as C12H26 (RP-1, kerosene used as rocket fuel). An atmosphere of 90% CO2 and 10% C2H6 would have molecular weights and adiabatic indexes close to what is seen on Eve, though there are other combinations of gasses that would work as well.

Eve's atmosphere fades exponentially as altitude increases. The scale height varies with altitude, which is a change from pre-1.0 versions of the game. The pressure-altitude profile is globally constant and independent of temperature. The following table gives the atmospheric pressure at various altitudes above sea level.

Altitude (m) Pressure (Pa) Pressure (atm)
0 506 625 5.000
2 500 329 212 3.249
5 000 217 760 2.149
7 500 151 432 1.495
10 000 109 422 1.080
12 500 77 912 0.769
15 000 54 946 0.542
20 000 29 097 0.287
25 000 16 457 0.162
30 000 8 327 0.082
35 000 3 688 0.036
40 000 1 526 0.015
50 000 543.2 0.005
60 000 192.6 0.002
70 000 40.41 0.000
80 000 3.500 0.000
90 000 0 0.000

The surface of Eve is very hot, with a globally averaged sea level temperature of approximately 135 °C. Except for a small inversion layer between 50-60 km at low latitudes, air temperatures decrease with increasing altitude up to an altitude of 70 km. Above 70 km, the rarified atmosphere warms as altitude increases. Despite the hot surface temperatures, the lack of a stratosphere means that Eve's atmosphere is cooler than Kerbin's at altitudes above ≈26.5 km. The temperature rise above 70 km suggests the presence of a thermosphere.

Air temperatures vary with latitude and time of day. At the equator, sea level temperatures vary between a nighttime low of 147 °C and a daytime high of 156 °C. At the poles, the temperature varies between 87 °C and 95 °C. Since Eve has no axial tilt, there are no seasonal temperature variations.

From within Eve's atmosphere, the sky appears indigo during nighttime and a violet-purple color during daytime. During dawn and dusk, the sky is green.

Atmospheric flight

The thickness of Eve's atmosphere makes it well suited for aerobraking from a high-speed interplanetary intercept. The periapsis altitude required for a successful aerocapture depends on the spacecraft's drag characteristics, its approach velocity, and the desired apoapsis of the resulting orbit. For an intercept originating from Kerbin, it appears that, under most conditions, the intercept periapsis should be about 65±5 km. Heat shields are required to prevent destructive overheating.

Parachutes work very effectively in Eve's dense atmosphere. A vehicle in Kerbin's atmosphere would require 3 times as much parachute area to attain the same descent rate on Eve.

Jet engines do not function in Eve's atmosphere, since it contains no oxygen — they make noise and consume fuel, but they produce no thrust. Planes with other propulsion methods do, however, work very well, and are an effective way to explore the planet. They work best between 35 km and 25 km where the atmosphere generates enough lift to glide and steer, but not enough drag to slow the aircraft excessively.


A large portion of Eve is covered in liquid, making it one of only three celestial bodies with oceans. The composition of the violet liquid which fills the oceans and lakes is unknown, but it has a higher density than water, at 1.5 tonnes/m3.[1]. According to the devs during a livestream, it was joked that the lakes were made of rocket fuel[citation needed]. One liquid that closely fits both of these characteristics is hydrogen peroxide (H2O2), which has a density of 1.450 tonnes/m3 and can be used as monopropellant.


Eve's orbit and atmosphere have a science multiplier of 7, which is rather average. But the surface has a multiplier of 12, which is the third highest science multiplier in the whole star system. Eve has 7 biomes with their own science to be collected. It has several Explodium Seas, among which lie large continents.

Biome list

File:SpinkZeroZero Biome Map 1.2.png
SpinkZeroZero biome map as of 1.2
  • Poles
  • Explodium Sea
  • Lowlands
  • Midlands
  • Highlands
  • Peaks
  • Impact Ejecta

Natural satellites

Eve's only natural satellite is the tiny captured asteroid Gilly in a highly eccentric and inclined orbit. Gilly is the smallest celestial body in the Kerbol system.

Orbital statistics

Visiting Eve potentially requires the least delta-v of any planet because its huge gravity well and dense atmosphere mitigate the difficulties that its slight relative inclination poses and greatly ease aero-captures, transfers, and landings; unfortunately, takeoff and escape therefore require the most delta-v of any celestial body with a solid surface.

The combination of high gravity and thick atmosphere makes return missions from the sea level of Eve very difficult. It requires about 11,500 m/s of delta-v to get into orbit from sea level. Driving to and launching from the peak of one of Eve's mountains can drastically reduce the amount of delta-V required (thus allowing successful launches with significantly lighter rockets). The highest peak on Eve since version 0.21.1 is 7540 m high, found near (25° S, 158.5° W)

Altitude (m) Delta-V Required (m/s)
0 11,282
1000 10,731
2000 10,219
3000 9,743
4000 9,300
5000 8,888
6000 8,507
7000 8,150
7540 7,968

A synchronous orbit of Eve requires an altitude of 10373.195 km and a velocity of 858.95 m/s. For a semi synchronous orbit of ½ an Eve day (11.25 hours or 40500 seconds) an orbit of 6275.676 km above Eve is needed with a velocity of 1082.2 m/s.

Reference frames

Time warp Minimum Altitude
5× 90 000 m Expression error: Unrecognized punctuation character "[".
10× 90 000 m Expression error: Unrecognized punctuation character "[".
50× 90 000 m Expression error: Unrecognized punctuation character "[".
100× 120 000 m Expression error: Unrecognized punctuation character "[".
1 000× 240 000 m Expression error: Unrecognized punctuation character "[".
10 000× 480 000 m Expression error: Unrecognized punctuation character "[".
100 000× 600 000 m Expression error: Unrecognized punctuation character "[".



  • Eve has higher gravity than Kerbin, restricting a Kerbal's jump to only half a meter and making EVA jets useless. This being said, if a Kerbal falls from more than 4 m, they will hit the ground much harder than on Kerbin, which may cause a glitch to happen in which they will clip into the terrain and accelerate away from Eve at phenomenal speed, sometimes faster than the speed of light itself, usually sending the unlucky Kerbal on an escape trajectory from Kerbol if they are not killed by the fall. They may bring something into interstellar space with them if they hit an object instead of the ground.
  • Solar panels will probably break off in flight, even with very low velocity. It's best to wait to extend them till stable on the surface, however they can break on the surface of Eve even when retracted. This may be due to Eve's high gravity.
  • Rovers can be challenging to drive on Eve due to its gravity, as the rover's wheels will easily break, but on the upside, since the gravity pulls them lower on their shocks and thus lower the centre of mass, they will be harder to flip over. Although not a glitch, it could cause clipping issues with a Kerbal sitting in EAS-1 External Command Seats
  • When landing fast, craft will sometimes sink into the surface of Eve. This can be fixed by using landing legs or engines to lift the ship up.


  • Added biomes
  • Terrain Tweaks — more land mass to the surface
  • Art pass.
  • Terrain tweaks — the tallest points are now about 6 km in altitude, compared to 11 km before.
  • Initial Release


  1. As of 1.0.5, oceans now have explicit density values: Eve's oceans now have a density of 1.5 tonnes/m3, while water has a density of 1.0 tonnes/m3.