Difference between revisions of "Synchronous orbit/ru"
(Created page with "A '''synchronous orbit''' is an orbit with the same orbital period as the rotational period of the orbited body. The eccentricity and inclination aren't bound to specific valu...") |
(→Sun-synchronous orbit) |
||
Line 51: | Line 51: | ||
* ‡ indicates that the altitude is the same as the orbit of another object | * ‡ indicates that the altitude is the same as the orbit of another object | ||
− | == | + | == Солнечно-синхронная орбита == |
− | :{{See also|| | + | :{{See also||[[W:ru:Солнечно-синхронная орбита|Солнечно-синхронная орбита]]}} |
− | + | В настоящем мире существует солнечно-синхронная орбита, которая отличается от синхронной орбиты вокруг Солнца. Вместо этого она представляет собой орбиту вокруг Земли, которая сама вращается, таким образом, что она выглядит похоже на орбиту остающуюся в том же самом положении относительно Солнца. Поскольку требует непостоянного поля тяготения, то ее невозможно моделировать в [[KSP/ru|Космической Программе Кербала]]. | |
== See also == | == See also == |
Revision as of 10:29, 16 September 2014
A synchronous orbit is an orbit with the same orbital period as the rotational period of the orbited body. The eccentricity and inclination aren't bound to specific values, although the orbit shouldn't intersect with the atmosphere or surface of the orbited body. Satellites on a synchronous have a ground track forming an analemma.
A stationary orbit is a special kind of synchronous orbit where the ground track is only a point. Additionally to the orbital period is the eccentricity equal to 0 and the inclination is exactly 0°. A satellite on this orbit will stay in the sky at the same position at all times and the surface velocity is zero. This makes the communication easy as the ground based antennae don't have to follow the satellite's relative motion. Because it is impossible to get all values exact for a stationary orbit, also satellites in stationary orbits form a small analemma.
Some celestial bodies don't allow synchronous orbits, and thus also no stationary orbits, because the altitude lies outside the celestial bodies' sphere of influence. This is because of a very slow rotation requiring a very high altitude to allow such long orbital periods explaining why all tidally locked moons don't have a synchronous orbits. Moho is the only planet without any synchronous orbit, because it's very slow rotational period with only almost two rotations in one orbit.
An advantage of an synchronous orbit is that they allow dropping multiple payloads from one craft because the orbit will go above the same point on the body's surface periodically. Usually the orbit has a large eccentricity so that the payload has to do only a minimum of maneuvers to reach the surface. In this case the payload is detached at the apoapsis and decelerated so that it lands on the celestial body. After the payload is successfully landed, the next payload can be dropped as soon as the craft reaches the apoapsis again.
Contents
Semi-synchronous and similar orbits
When the orbital period is half as long as the rotational period, the orbit is usually called semi-synchronous orbit. It is possible to calculate the semi-major axis of a semi-synchronous with the knowledge about the semi-major axis of a synchronous orbit and the fraction between the two orbits:
The fraction f is the quotient of the period of the synchronous orbit (a1) and second orbit (a1/f). When the second orbit is a semi-synchronous orbit this quotient is 2:
An orbit where the orbital period is lower than the rotational period has some advantages, as some bodies don't allow synchronous orbits but semi-synchronous orbits. When dropping payloads which should land nearby from an orbit which isn't synchronous only every f, which is two for semi-synchronous orbits, orbits it is possible to drop a payload.
One example for a semi-synchronous orbit in real world science is a Molniya orbit.
Altitudes and semi-major axes
The following table, contain the altitudes for a circular synchronous orbit around all celestial bodies, even when the altitude resides outside the SoI. The altitudes are from the body's surface, while the semi-major axes are from the body's center.
Body | Synchronous orbit | Semi-synchronous orbit | Tidally locked | ||
---|---|---|---|---|---|
Altitude | Semi-major axis | Altitude | Semi-major axis | ||
Кербол (Kerbol) | 1 508 045,29 km | 1 769 645,29 km | 853 206,67 km | 1 114 806,67 km | – |
Мохо (Moho) | 18 173,17 km † | 18 423,17 km † | 11 355,87 km † | 11 605,87 km † | Нет |
Ив (Eve) | 10 328,47 km | 11 028,47 km | 6 247,50 km | 6 947,50 km | Нет |
Джилли (Gilly) | 42,14 km | 55,14 km | 21,73 km | 34,73 km | Нет |
Кербин (Kerbin) | 2 863,33 km | 3 463,33 km | 1 581,76 km | 2 181,76 km | Нет |
Мун (Mun) | 2 970,56 km † | 3 170,56 km † | 1 797,33 km | 1 997,33 km | Да |
Минмус (Minmus) | 357,94 km | 417,94 km | 203,29 km | 263,29 km | Нет |
Дюна (Duna) | 2 880,00 km ‡ | 3 200,00 km | 1 695,87 km | 2 015,87 km | Нет |
Айк (Ike) | 1 133,90 km † | 1 263,90 km † | 666,20 km | 796,20 km | Да |
Дрес (Dres) | 732,24 km | 870,24 km | 410,22 km | 548,22 km | Нет |
Джул (Jool) | 15 010,46 km | 21 010,46 km | 7 235,76 km | 13 235,76 km | Нет |
Лейт (Laythe) | 4 686,32 km † | 5 186,32 km † | 2 767,18 km | 3 267,18 km | Да |
Валл (Vall) | 3 593,20 km † | 3 893,20 km † | 2 152,56 km † | 2 452,56 km † | Да |
Тило (Tylo) | 14 157,88 km † | 14 757,88 km † | 8 696,88 km | 9 296,88 km | Да |
Боп (Bop) | 2 588,17 km † | 2 653,17 km † | 1 606,39 km † | 1 671,39 km † | Да |
Пол (Pol) | 2 415,08 km † | 2 459,08 km † | 1 505,12 km † | 1 549,12 km † | Да |
Иилу (Eeloo) | 683,69 km | 893,69 km | 352,99 km | 562,99 km | Нет |
- † indicates that the altitude resides outside the SOI
- ‡ indicates that the altitude is the same as the orbit of another object
Солнечно-синхронная орбита
- → Смотрите также: Солнечно-синхронная орбита
В настоящем мире существует солнечно-синхронная орбита, которая отличается от синхронной орбиты вокруг Солнца. Вместо этого она представляет собой орбиту вокруг Земли, которая сама вращается, таким образом, что она выглядит похоже на орбиту остающуюся в том же самом положении относительно Солнца. Поскольку требует непостоянного поля тяготения, то ее невозможно моделировать в Космической Программе Кербала.
See also
- KEO, the stationary orbit around Kerbin
- Geosynchronous Orbit (Math), some math on how to calculate a synchronous orbit
- Synchronous orbit on Wikipedia
- Stationary orbit on Wikipedia
- Geostationary orbit on Wikipedia
- Geosynchronous orbit on Wikipedia
- Heights for (semi-) synchronous orbits on the KSP forums; Includes a formula for calculating (semi)synchronous orbits