Difference between revisions of "Tutorial: Basic Orbiting (Math)/zh-cn"

From Kerbal Space Program Wiki
Jump to: navigation, search
(zh-cn translate of "Orbital Speed")
m (Moved to /zh-cn category)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
在基础轨道飞行指南篇中,你了解了轨道飞行的概念以及基本的轨道稳定调整,还拿到了一个轨道列表,可以籍此了解某轨道的重要参数。现在,假如你的轨道并不在这个表里该怎么办?假如你需要一个特定周期的轨道呢?下面这些公式会在这些场合起作用。
+
在基础轨道飞行指南篇中,你了解了轨道飞行的概念以及基本的轨道稳定调整,还拿到了一个轨道列表,可以籍此了解某轨道的重要参数。现在,假如你的轨道并不在这个表里该怎么办?假如你需要一个特定周期的轨道呢?下列公式可以解决这些问题。
  
 
==轨道速度==
 
==轨道速度==
Line 34: Line 34:
 
<math>v=600\ 000\ \mathrm{m}\sqrt{\frac{9.807\ \mathrm{m}/\mathrm{s}^2}{600\ 000\ \mathrm{m} + h}}</math>
 
<math>v=600\ 000\ \mathrm{m}\sqrt{\frac{9.807\ \mathrm{m}/\mathrm{s}^2}{600\ 000\ \mathrm{m} + h}}</math>
  
==Orbital Period==
+
==轨道周期==
From the basic mechanics formula:
+
基本的速度-距离公式为:
  
 
<math>d=vt</math>
 
<math>d=vt</math>
  
We know ''v'' from the above, and ''d'' is simply the circumference of a circle with a radius equal to your orbital altitude plus the radius of Kerbin:
+
上文计算得到 ''v'' ,而 ''d'' 则是圆形轨道周长,其圆形半径为轨道高度加上 Kerbin 的半径,''t'' 就是要求的轨道周期:
  
 
<math>t=2\pi\frac{600\ 000\ \mathrm{m} + h}{v}</math>
 
<math>t=2\pi\frac{600\ 000\ \mathrm{m} + h}{v}</math>
  
[[Category:Tutorials]]
+
[[Category:Tutorials/zh-cn]]

Latest revision as of 18:48, 2 May 2019

在基础轨道飞行指南篇中,你了解了轨道飞行的概念以及基本的轨道稳定调整,还拿到了一个轨道列表,可以籍此了解某轨道的重要参数。现在,假如你的轨道并不在这个表里该怎么办?假如你需要一个特定周期的轨道呢?下列公式可以解决这些问题。

轨道速度

轨道速度与向心加速度的关系如下公式:

这里,a 是重力加速度,v 是水平速度,r 是轨道半径。

当然,重力会随与行星之间的距离而变化,下述公式为如何根据高度计算 a

这里,g 是海平面处的重力加速度(9.807 m/s2),R 是 Kerbin 的半径(600 km),h 是轨道高度。

:轨道半径 r 等于 Kerbin 半径R 加上高度 h,以 R + h 代替 r

现在我们得到了两个计算 a 的公式,代入 a 并简化:

最后,再代入已知的 gR

轨道周期

基本的速度-距离公式为:

上文计算得到 v ,而 d 则是圆形轨道周长,其圆形半径为轨道高度加上 Kerbin 的半径,t 就是要求的轨道周期: