Terminology/zh-cn

From Kerbal Space Program Wiki
< Terminology
Revision as of 03:20, 12 May 2015 by Renzh (talk | contribs) (Structure Update, to be in line with English page)
Jump to: navigation, search

KSP中使用了大量物理学和轨道飞行的术语,面对这些词语时,非专业人员无疑是会异常困惑,更不要说还有大量的其他科学词汇和缩写了。

本页就是一个相关术语简洁的查询表单,希望能帮助你顺利的走上专业宇航员之路。

数学

笛卡尔坐标系——使用直角坐标
极坐标系——使用角度和长度
椭圆(ellipse)
椭圆是圆锥曲线的一种,是距确定的两点的距离之和恒定的一点的运动轨迹。
法向量(normal vector)
一条与平面垂直的向量。
标量(scalar)
一个没有方向的数值。标量一般会有测量单位的后缀,表明这个标量的量纲。 比如 3 米每秒(m/s), 3 米(m),3 秒(s) 都是标量:它们分别是速率(区分于速度)、路程(区分于位移)和时间的单位。
向量, 矢量(vector)
一个方向和大小的集合。比如前进方向和速率放在一起就是速度。一个向量如何被表示取决于采用的坐标系,以及多少个维度被使用。 <35°, 12>是一个二维的极坐标向量,而<14, 9, -20>则是一个三维笛卡尔(直角)坐标向量。也有其他的坐标系,但这些是最常用的
<35°, 12>是一个12个单位长的箭头,从原点(零点,角度在这里没有意义,因为这是一个没有长度的点)出发,结束在一个与偏离极轴(通常是x轴,逆时针旋转为正角度)35°的点。
<14, 9, -20>是一个从原点(<0,0,0>)出发,在一个x坐标为14,y坐标为9,z坐标为20的点终止的箭头。
使用直角坐标系的优点是你可以准确地知道向量的终止位置在哪里,但是计算向量的长度则比较麻烦。而在极坐标系中,向量长度十分易得,终止位置却较难得出。
速度加速度动量等物理量都是矢量。

一个三维坐标系需要:

  • 一个原点。
  • 3个单位向量。这些向量定义了沿着坐标轴的基本量度和坐标轴的方向。
  • 3个标量,这可以是角度或坐标,用来描述坐标空间中的位置。

轨道

常用轨道参数图解
轨道远点(apoapsis)
椭圆轨道上,距离轨道中心天体最远的点。
轨道近点(periapsis)
椭圆轨道上,距离轨道中心天体最近的点。
近-* 和 远-* (peri-* and apo-*)
谈到轨道,我们通常都用具体的天体名称来指明轨道中心。因此,在这个游戏中,对于环绕Kerbin的轨道,我们会用近Kerbin点(Perikee, Perikerb)、远Kerbin点(Apokee, Apokerb)这样的名称。
升交点(ascending node)
以中心天体为参考系,轨道开始向“北”运动的点。“北”向,是参考轨道中心天体的坐标系。
降交点(descending node)
以中心天体为参考系,轨道开始向南运动的点。
离心率(eccentricity)

描述轨道几何特征的参数。
  • ecc = 0 → 圆形轨道;
  • 0 < ecc < 1 → 椭圆轨道;
  • ecc = 1 → 抛物线轨道 - 这是一种逃逸轨道;
  • ecc > 1 → 双曲线轨道 - 这是另一种逃逸轨道;
轨道倾角(inclination)
轨道平面与参考平面的夹角。(例如,90° 赤道平面倾角轨道就是所谓的极地轨道。)
近Kerbin轨道(low Kerbin orbit, LKO)
大多数天体的低轨道都存在于其重力范围内。该轨道高度低,但是稳定(高于大气层)。低轨道通常都是后续飞行的基础,位于上升段和向其他最终的目的地出发之间,在轨道的任意点都可以进行飞船脱离轨道的点火推进。其优点就是抵达低轨道所需要的燃料是最少的。
天顶(zenith)
地面座标系统中“正上方”的点,也就是火箭在发射场等待发射时指向的点,亦即,“天空中最高的点”。
天底(nadir)
“天顶”的反向点。
轨道点(orbital nodes)
轨道中的特定点,如近点、远点,以及与其他轨道的交汇点等等。
轨道法向(orbit normal)
轨道平面的正交方向矢量。飞船速度矢量方向与重力矢量方向的矢量和就是轨道法向。其遵照右手规则,飞船在轨道逆时针飞行时,其轨道法向朝“上”,顺时针则朝下。而“上”也就是“北”,或“N+”,“下”也叫做“逆法向”,“南”或者 “N-”。
轨道平面(orbital plane)
描述轨道环绕飞行平面的虚拟圆盘(通常用于表述轨道倾角)。
顺行(prograde)
轨道路径的前进方向。由于轨道为椭圆形,因此实际上它的方向是飞船所处轨道位置的切线方向。
逆行(retrograde)
顺行的反向。
参考平面(reference plane)
所有飞行器在描述其所处轨道时都需要一个参考平面。对于行星轨道,通常是采用其赤道平面作为参照。类似太阳系的多天体平面为参考时,以黄道平面作为参考平面。在以其他轨道为目标飞行时,应采用目标轨道平面。轨道偏心率和上升点经度(以参考平面为坐标系)即可确定轨道平面。
半长轴(semi-major axis)
长轴是过焦点与椭圆相交的线长,而半长轴就是椭圆长轴的一半。在 KSP 中,半长轴的计算公式是:

。 轨道运行体的半长轴就是其中心椭圆轨道近点、远点距离的平均值。由于轨道远近点都是相对于轨道中心物体表面的距离,因此需要在公式中加入其半径。半长轴相同的轨道运行周期相同,无论离心率如何。

亚轨道(sub-orbit)
亚轨道近点位于行星表面之下,亚轨道飞行最终会与该行星发生交会碰撞。
推重比(thrust-weight-ratio, TWR)
飞船总质量与动力段所有发动机总推力的比值。若TWR>1,飞船可以完成加速和上升。若TWR<1,飞船是无法克服重力和低飞行高度空气阻力的,不过低 TWR 在太空或许可以足够保证飞行器的运动。因为飞船重量(W)与其所处位置的重力加速度(g)成正比,TWR也跟具体位置有关。Mün表面的重力加速度只是Kerbin表面重力加速度的16.6%,因此,TWRKerbin = 1相当于TWRMün = 6。

Ship Orientation

The ship orientation is always relative to a specific object. The terms are usually defined relative to the cockpit.

Zenith
Top side of the ship which is usually oriented away from the orbited body. Opposite of nadir.
Nadir
Bottom side of the ship which usually oriented towards the orbited body. Opposite of zenith.
Port(side)
Left side of the ship. Opposite of starboard.
Starboard
Right side of the ship. Opposite of portside.
Front
Front side/end of the ship which is usually towards the nose or prograde vector. Opposite of aft.
Aft
Back side/end of the ship which is usually housing the primary rockets and facing in retrograde. Opposite of front.

太空机动

大气层制动(atmospheric braking)
→ 全文: 空气制动
降低轨道近点,使其进入行星的大气层。这种飞行方式可以利用空气阻力降低飞行器的速度。它可以用于再进入(参考下文),也可以应用于轨道的调整,同时节约燃料。
点火(burn)
点燃发动机,通常目的是进行轨道调整。
圆化调整(circularizing)
这种机动(发动机点火推进)的目的是把轨道的偏心率调整到近似于零。通常是在轨道近/远点打开发动机推力来实现。
再入(re-entry)
就是再进入大气层,并利用空气阻力减速,使飞船进入地面返回轨道。由于需要足够高的速度来避免大气层把飞船“反弹”回太空,这种机动通常都会面临着剧烈的升温压力。在目前的游戏版本中,再进入过程只是个半成品,升温和大气反弹都没有实现。(不过有相关的MOD实现这个特性)
反向点火(retroburn)
向飞船前进的反方向点火推进,例如,把发动机喷口转向顺行方向,飞船头部对准逆行方向。这是一个常用的机动,可以在不改变其他轨道参数的情况下降低轨道速度。

物理

加速度(acceleration)
速度的改变率。加速度是矢量,单位为“米/秒2”(m/s2).
抛物线轨道(ballistic trajectory)
下落物体的轨道就是抛物线。在火箭飞行中,它就是指飞行器只受重力影响,本身没有任何动力(如推力)的飞行轨道。
速度改变量(Δv, delta-v)
飞行器速度的实际改变量或可能改变量。测量单位为米每秒(m/s)。质量增大在单位时间内会降低Δv,而增加推力可以在单位时间内提高Δv。这是一个有效计算推进效率的参量。例如,飞行器脱离Kerbin大气层并进入稳定轨道所需要的Δv大约是4,000 m/s。
能量(energy)
在轨飞行器的能量是其动能和势能之和。势能的计算公式是 ,动能的计算公式是 ,这里G万有引力常量M是行星的质量,m是飞行器的质量,R是距行星中心的距离,而v就是飞行器的速度。,总能量大于零,飞行器就进入逃逸轨道。相同半长轴的轨道能量相等。
逃逸速度(escape velocity)
脱离行星引力范围所需要的速度,其计算公式为 ,G是万有引力常量,M是行星的质量,r是行星半径。
g力(G-force)
g力是一个加速度的量度,不过其考虑了重力的影响。地球海平面测量得到的重力加速度约为9.81 m/s²,将此定义为1G。地球表面物体的加速度大约都是1G。某物体如果其加速度为2G,其重力则增加一倍。在轨运行并关闭发动机的航天器处于自由落体状态,此时为0G。
引力(gravity)
以物体的引力质量为力荷的力。本身非常微弱,只是那些质量很高的物体才能产生明显的引力,如行星、月亮等。其大小与物体中心距离的平方呈反比。所以距离增加 1 倍,其引力会降低到1/22=1/4。
引力井(gravity wall)
行星引力的作用范围。实际上这个区域是无限延伸的,但是由于引力会随着距离的增大急剧降低,其范围只是引力明显起作用的区域。
轨道(orbit)
当某物体具有足够大的切线速度(而且其位于大气层之外,无明显的空气阻力减速时),它会绕行星运行,并且不会落向该行星,这个运动轨迹就是轨道。稳定的轨道都是椭圆形(圆形轨道就是一个偏心率为零的椭圆轨道)。如果其切线速度大于逃逸速度,那么它的轨道就成为抛物线或双曲线轨道。
比冲(specific impulse, Isp
比冲 Isp 是对一个推进系统的燃烧效率的描述。比冲越高,单位燃料所产生的推力越大。通常比冲的单位可以用来表示,不过其正确的物理学单位为 距离每单位时间,通常用 米每秒英尺每秒。为避免与速度的单位混淆,物理学上会把比冲除以地球(或Kerbin)表面的重力加速度(9.81 m/s²)再使用。这样比冲的单位就是。在公式中实际使用比冲时,它必须转化为正确的物理学单位——距离每单位时间,即再乘以地球(或Kerbin)表面的重力加速度(9.81 m/s²)。这种比冲值只是为了单位的转换,比冲并不随引力的变化而变化
比冲是推力和燃料流量的比值,所以有时候会以作为其单位。这只是另一种数学形式, ,而力是质量和加速度之乘积,即,所以在国际单位制下可以得到
作用范围(sphere of influence, SoI, SOI)
以该天体为主要引力源的球体范围。游戏中在特定天体的作用范围内的飞船只考虑该天体的引力。
切向速度(tangential velocity)
物体沿其飞行轨迹切线方向的速度分量。瞬时速度的方向永远是运动轨迹的切线方向。
轨迹(trajectory)
轨迹是运动物体以时间为变量所得到的空间位置所组成的路径。
速度(velocity)
位移随时间的变化率。速度是矢量,单位为米每秒(m/s)。

另见