Parts/Resources/ISRU/ISRU.cfg

From Kerbal Space Program Wiki
< Parts
Revision as of 14:08, 20 November 2015 by VariousMetals (talk | contribs) (+template)
Jump to: navigation, search
This is the configuration file for ISRU.
PART
{
name = ISRU
module = Part
author = RoverDude

mesh = ISRU.mu
scale = 1
rescaleFactor = 1

node_stack_top = 0.0, 1.5, 0.0, 0.0, 1.0, 0.0, 2
node_stack_bottom = 0.0, -1.5, 0.0, 0.0, -1.0, 0.0, 2

TechRequired = advScienceTech
entryCost = 24000
cost = 8000
category = Utility
subcategory = 0
title = Convert-O-Tron 250
manufacturer = Kerbodyne
description = This mobile processing plant can take raw materials containing even trace amounts of oxygen and hydrogen, and crack them into useful fuel products.  When operated by a skilled engineer, you will be able to operate with better efficiency.  These modules operate best at their ideal operating temperatures, and features auto-shutdown in the event of excessive overheating.  Radiators can be used to help manage excessive heat.
attachRules = 1,1,1,0,0

// --- standard part parameters ---
mass = 4.25
dragModelType = default
maximum_drag = 0.2
minimum_drag = 0.2
angularDrag = 2
crashTolerance = 7
maxTemp = 2000 // = 3500

	MODULE
	{
		name = ModuleOverheatDisplay
	}

	MODULE
	{
		 name = ModuleResourceConverter
		 ConverterName = Lf+Ox
		 StartActionName = Start ISRU [Lf+Ox]
		 StopActionName = Stop ISRU [Lf+Ox]	 
		AutoShutdown = true
		TemperatureModifier
		{
			key = 0 100000
			key = 750 50000
			key = 1000 10000
			key = 1250 500	
			key = 2000 50	
			key = 4000 0
		}				
		GeneratesHeat = true
		DefaultShutoffTemp = .8
		ThermalEfficiency 
		{
			key = 0 0 0 0
			key = 500 0.1 0 0
			key = 1000 1.0 0 0
			key = 1250 0.1 0 0
			key = 3000 0 0 0 
		}


		UseSpecialistBonus = true
		SpecialistEfficiencyFactor = 0.2
		SpecialistBonusBase = 0.05
		Specialty = Engineer
		EfficiencyBonus = 1

		 
		 INPUT_RESOURCE
		 {
			ResourceName = Ore
			Ratio = 0.5
			FlowMode = STAGE_PRIORITY_FLOW
  		 }
		 INPUT_RESOURCE
		 {
			ResourceName = ElectricCharge
			Ratio = 30
		 }
		 OUTPUT_RESOURCE
		 {
			ResourceName = LiquidFuel
			Ratio = 0.45
			DumpExcess = false
			FlowMode = STAGE_PRIORITY_FLOW
		 }
		 OUTPUT_RESOURCE
		 {
			ResourceName = Oxidizer
			Ratio = 0.55
			DumpExcess = false
			FlowMode = STAGE_PRIORITY_FLOW
		 }
	}

	MODULE
	{
		 name = ModuleResourceConverter
		 ConverterName = Monoprop
		 StartActionName = Start ISRU [Monoprop]
		 StopActionName = Stop ISRU [Monoprop]
		AutoShutdown = true
		TemperatureModifier
		{
			key = 0 100000
			key = 750 50000
			key = 1000 10000
			key = 1250 500	
			key = 2000 50	
			key = 4000 0
		}				
		GeneratesHeat = true
		DefaultShutoffTemp = .8
		ThermalEfficiency 
		{
			key = 0 0 0 0
			key = 500 0.1 0 0
			key = 1000 1.0 0 0
			key = 1250 0.1 0 0
			key = 3000 0 0 0 
		}

		UseSpecialistBonus = true
		SpecialistEfficiencyFactor = 0.2
		SpecialistBonusBase = 0.05
		Specialty = Engineer
		EfficiencyBonus = 1

		 
		 INPUT_RESOURCE
		 {
			ResourceName = Ore
			Ratio = 0.5
		 }
		 INPUT_RESOURCE
		 {
			ResourceName = ElectricCharge
			Ratio = 30
		 }
		 OUTPUT_RESOURCE
		 {
			ResourceName = MonoPropellant
			Ratio = 1
			DumpExcess = false
		 }
	}


	MODULE
	{
		 name = ModuleResourceConverter
		 ConverterName = LiquidFuel
		 StartActionName = Start ISRU [LqdFuel]
		 StopActionName = Stop ISRU [LqdFuel]
		AutoShutdown = true
		TemperatureModifier
		{
			key = 0 100000
			key = 750 50000
			key = 1000 10000
			key = 1250 500	
			key = 2000 50	
			key = 4000 0
		}				
		GeneratesHeat = true
		DefaultShutoffTemp = .8
		ThermalEfficiency 
		{
			key = 0 0 0 0
			key = 500 0.1 0 0
			key = 1000 1.0 0 0
			key = 1250 0.1 0 0
			key = 3000 0 0 0 
		}
		
		UseSpecialistBonus = true
		SpecialistEfficiencyFactor = 0.2
		SpecialistBonusBase = 0.05
		Specialty = Engineer
		EfficiencyBonus = 1

		 
		 INPUT_RESOURCE
		 {
			ResourceName = Ore
			Ratio = 0.45
			FlowMode = STAGE_PRIORITY_FLOW
  		 }
		 INPUT_RESOURCE
		 {
			ResourceName = ElectricCharge
			Ratio = 30
		 }
		 OUTPUT_RESOURCE
		 {
			ResourceName = LiquidFuel
			Ratio = 0.9
			DumpExcess = false
			FlowMode = STAGE_PRIORITY_FLOW
		 }
	}

	
	MODULE
	{
		 name = ModuleResourceConverter
		 ConverterName = Oxidizer
		 StartActionName = Start ISRU [Ox]
		 StopActionName = Stop ISRU [Ox]
		AutoShutdown = true
		TemperatureModifier
		{
			key = 0 100000
			key = 750 50000
			key = 1000 10000
			key = 1250 500	
			key = 2000 50	
			key = 4000 0
		}				
		GeneratesHeat = true
		DefaultShutoffTemp = .8
		ThermalEfficiency 
		{
			key = 0 0 0 0
			key = 500 0.1 0 0
			key = 1000 1.0 0 0
			key = 1250 0.1 0 0
			key = 3000 0 0 0 
		}

		UseSpecialistBonus = true
		SpecialistEfficiencyFactor = 0.2
		SpecialistBonusBase = 0.05
		Specialty = Engineer
		EfficiencyBonus = 1

		 
		 INPUT_RESOURCE
		 {
			ResourceName = Ore
			Ratio = 0.55
			FlowMode = STAGE_PRIORITY_FLOW
  		 }
		 INPUT_RESOURCE
		 {
			ResourceName = ElectricCharge
			Ratio = 30
		 }
		 OUTPUT_RESOURCE
		 {
			ResourceName = Oxidizer
			Ratio = 1.1
			DumpExcess = false
			FlowMode = STAGE_PRIORITY_FLOW
		 }
	}
	
	MODULE
	{
		name = ModuleAnimationGroup
		deployAnimationName = 
		activeAnimationName = ProcessorLarge_running
		moduleType = Converter
		autoDeploy = true
	}
	

	MODULE
	{
		name = ModuleCoreHeat
		CoreTempGoal = 1000					//Internal temp goal - we don't transfer till we hit this point
		CoreToPartRatio = 0.1				//Scale back cooling if the part is this % of core temp
		CoreTempGoalAdjustment = 0			//Dynamic goal adjustment
		CoreEnergyMultiplier = 0.1			//What percentage of our core energy do we transfer to the part
		HeatRadiantMultiplier = 0.05		//If the core is hotter, how much heat radiates?
		CoolingRadiantMultiplier = 0		//If the core is colder, how much radiates?
		HeatTransferMultiplier = 0			//If the part is hotter, how much heat transfers in?
		CoolantTransferMultiplier = 0.01	//If the part is colder, how much of our energy can we transfer?
		radiatorCoolingFactor = 1			//How much energy we pull from core with an active radiator?  >= 1
		radiatorHeatingFactor = 0.01		//How much energy we push to the active radiator
		MaxCalculationWarp = 1000			//Based on how dramatic the changes are, this is the max rate of change
		CoreShutdownTemp = 4000				//At what core temperature do we shut down all generators on this part?
		MaxCoolant = 500					//Maximum amount of radiator capacity we can consume - 50 = 1 small
	}

}