Difference between revisions of "Specific impulse"
Spheniscine (talk | contribs) |
Spheniscine (talk | contribs) |
||
Line 11: | Line 11: | ||
=== Multiple engines === | === Multiple engines === | ||
+ | The combined specific impulse of multiple engines is the [http://en.wikipedia.org/wiki/Harmonic_mean#Weighted_harmonic_mean weighted harmonic mean] of the engine's specific impulses, weighted by their thrust. It can be calculated by the following formula: | ||
{{Formula|math=I_{sp} = \frac{\sum\limits_i F_{T_i} }{\sum\limits_i \dot m_i} = \frac{\sum\limits_i F_{T_i} }{\sum\limits_i \frac{F_{T_i} }{I_{sp_i} } }|where=* <math>I_{sp}</math> is the specific impulse in meters per second | {{Formula|math=I_{sp} = \frac{\sum\limits_i F_{T_i} }{\sum\limits_i \dot m_i} = \frac{\sum\limits_i F_{T_i} }{\sum\limits_i \frac{F_{T_i} }{I_{sp_i} } }|where=* <math>I_{sp}</math> is the specific impulse in meters per second | ||
* <math>I_{sp_i}</math> the specific impulse of each engine in meters per second | * <math>I_{sp_i}</math> the specific impulse of each engine in meters per second |
Revision as of 12:19, 6 November 2014
The specific impulse defines the efficiency of an engine. It is linked to the thrust and fuel consumption. The unit is either meters per second or only seconds.
Contents
Formula
- is the specific impulse in meters per second
- the thrust in newtons
- the fuel consumption in kg/s
By multiplying this value with g0 it is possible to change the unit to only seconds avoiding conversion issues between the SI and customary units. The value g0 behaves like a conversion factor and doesn't change when the gravity for the craft is changing. Usually both values are called specific impulse and are abbreviated by Isp. The name Isp,g0 is used here only to clarify that both values aren't the same. This value is sometimes called weight specific impulse.
- is the specific impulse in seconds
- is the surface gravity in the required unit (usually 9.81 meters per second squared)
The formula using the it (e.g. for Δv) has to specify what unit it does expect and if the value is defined in the other one it has to be converted.
Multiple engines
The combined specific impulse of multiple engines is the weighted harmonic mean of the engine's specific impulses, weighted by their thrust. It can be calculated by the following formula:
- is the specific impulse in meters per second
- the specific impulse of each engine in meters per second
- the thrust of each engine in newton
- the fuel consumption in kg/s
When the fuel consumption is not used in this formula, it is only important that all thrust values have the same unit (e.g. kilonewtons) and the specific impulse have all the same unit (e.g. seconds). The result is then in the same unit as the specific impulses of the engines. If all engines have the same specific impulse the resulting specific impulse will be the same.
Physical background
In KSP the fuel consumption on most engines depend on the atmospheric pressure with the lowest consumption in vacuum. So the specific impulse is at the highest point in the vacuum. In the real world this is usually reversed: The fuel consumption stays always the same but the thrust is increasing over time, because it is easier to have a steady fuel flow. Because a higher thrust with the same fuel consumption it is more efficient the specific impulse also rises. The specific impulse can only be calculated using this method for reaction engines and not jet engines as those work on another principle.
Although the unit of the specific impulse is a velocity it is lower than the exhaust speed usually, because some of the fuel consumed isn't used for propelling directly, but runs the turbopumps to fuel the engine.
Conversion factor
To convert the specific impulse between the handy weight specific impulse and the physical usable specific impulse it had to be converted with g0. It appears that this value isn't 9.81 m/s² which is used in real world. To determine the factor the following formula can be used:
- is the thrust of the engine
- is the mass flow of the fuel components
- is the density of the fuel components
- is the weight specific impulse
For example liquid fuel engines have the fuel components are oxidizer and liquid fuel. When using one Rockomax "Mainsail" Liquid Engine on the launch pad at full throttle uses 48.96 units of liquid fuel and 59.84 units of oxidizer with an weight specific impulse of 280.8 seconds and a thrust of 1.5 MN. This gives a conversion factor between 9.81873052 m/s and 9.8205356 m/s, assuming that the density of liquid fuel and oxidizer is 5 kg per unit. By reducing the engine's weight specific impulse it is possible to get higher mass flow rates improving the conversion factor to a value between 9.81994836 m/s and 9.82006181 m/s by using a thrust of only 85 kN and a weight specific impulse of 1 second for all pressures.[1] The value isn't exact, because the exact mass flows aren't known. It can be assumed that the conversion factor is about 9.82 m/s² making the engines a bit more efficient than expected.[2]
Example
The Kerbal X has six LV-T45 Liquid Fuel Engines with a specific impulse of 320 s in atmosphere and one Rockomax "Mainsail" Liquid Engine with a specific impulse of 280 s. The average specific impulse of all engines is then:
To convert this value into a physical usable value. Note that the conversion factor used here is the KSP relevant value of 9.82 m/s² and not the 9.81 m/s² used in real world science.
This value can then be used to calculate the fuel consumption:
Because the engines use liquid fuel and oxidizer with a density of 5000 kg/m³ it is possible to calculate the volume consumed.
Of course this values of the craft are valid for Kerbin's atmosphere. Because the air gets thinner with altitude the efficiency is rising and the fuel consumption is falling. Also because of the staging pattern engines will be dropped until reaching vacuum and thus changing the efficiency again. This time the efficiency lowers, because the higher efficient engines drop first leaving only the Mainsail engine with the lowest efficiency of all engines on the craft.
See also
- Terminology
- Specific impulse on Wikipedia
Notes
- ↑ Values determined from File:Isp conversion factor.png.
- ↑ In File:10X Xenon.png 10 PB-ION Electric Propulsion Systems are running at full power and consuming a lower value that 10× the theoretical value calculated with 9.81 m/s².