Tutorial: Basic Orbiting (Math)/fr

From Kerbal Space Program Wiki
< Tutorial: Basic Orbiting (Math)
Revision as of 16:50, 23 April 2014 by Mixoupe (talk | contribs) (Orbital Equations)
Jump to: navigation, search
KSP apparently greatly increases the understanding of orbital mechanics

Dans le tutoriel de mécanique orbitale de base à été introduit le concept d'orbite, de stabilisation d'orbite, d'orbite de transfert ainsi qu'une table des vitesses orbitales. Mais que faire si vous désirez suivre une orbite qui n'est pas dans cette table ? Ou si vous voulez orbiter autour d'un autre corps que Kerbin ? Et avec une période spécifique ? C'est là que vient le moment de faire un peu de maths !

Vitesse orbitale

La relation entre vitesse orbitale et accélération est donnée par la formule

est l'accélération centripète, est la vitesse horizontale (orbitale) et est le rayon de l'orbite (distance au centre du corps orbité).

Cette accélération centripète correspond à la "force" qui nous attire vers le sol, à savoir l'accélération de la pesanteur, qui dépend de la distance au centre du corps orbité et se calcule comme suit :

  • est un paramètre gravitationnel du corps orbité (3530,461 km³/s² pour Kerbin).
  • est la constante gravitationnelle ().
  • est la masse du corps orbité.
  • est le rayon du corps orbité (600 km pour Kerbin).
  • est l'altitude de l'orbite.

Si nous orbitons autour de Kerbin, on peut obtenir cette valeur de à partir de la valeur de , qui est l'accélération de la pesanteur à la surface de Kerbin, par la formule

Notons que le rayon de l'orbite est précisément la somme du rayon du corps et de l'altitude de l'orbite, donc .

Comme nous avons deux expression de la valeur de , nous pouvon égaler les deux membres et en extraire la valeur de  :

Et en substituant et par leur valeur (pour Kerbin), on a :

Période orbitale

La formule de base de la mécanique nous donne

Connaissant grâce à la formule précédente, et étant simplement la circonférence d'un cercle de rayon (rayon de l'orbite, soit ), on obtient la période (en secondes) :

Et pour Kerbin :

Orbital Equations

Dans cette section nous supposons que le vaisseau orbite un corps particulier et que la vaisseau est beaucoup plus petit que ce corps. En termes techniques on dira que le barycentre du système corps-vaisseau se situe au centre de masse du corps. On suppose également que l'orbite est entièrement située dans la sphère d'influence du corps et ne subit l'influence d'aucun autre corps. Nous supposons enfin que seule la mécanique classique s'applique dans le jeu, et ne tenons pas compte des effets relativistes. enfin, désignera la masse du corps orbité, la masse du vaisseau et la distance entre leurs centres de masse (du vaisseau au centre du corps).

Quand le vaisseau orbite un corps, la distance qui les sépare est donnée par l'équation

  • est le moment angulaire du vaisseau.
  • est l'excentricité de l'orbite (rapport entre la distance des foyers et le grand axe de l'ellipse).
  • est un angle paramétrant l'orbite (compris entre 0° et 360°).

Quand , l'orbite est fermée et forme une ellipse et quand , l'orbite est ouverte et forme une parabole. Quand , l'orbite est au périastre et quand l'orbite est à l'apoastre.

At periapsis,

and at apoapsis,

.

The semimajor axis is

and the semiminor axis is

.

Given the results for and above,

and

thus

The velocity for an object in elliptical orbit about a much larger object is

.

The energy for an object in orbit is

.

One should note that for bounded orbits, the energy is negative and for escape orbits, energy is non-negative.

The orbital period is

.

Let and be the two apsides of a given orbit and let a craft execute a burn imparting a specific all at the single point in time the craft is at . For this problem can be either positive or negative. If it is positive then the thrust is to speed up the craft but if it is negative the ture delta v is the oppositie of that in the problem but the thrust is to slow down the craft. This problem assumes that the thust is in the same or opposite direction of travel and is not enough to reverse the craft. The new orbit will have apsides of and with .

The speed of the craft before the burn is

.

The speed of the craft after the burn is

which yields

and