Gravity turn/hu

From Kerbal Space Program Wiki
< Gravity turn
Revision as of 00:16, 9 June 2014 by NWM (talk | contribs)
Jump to: navigation, search

A gravitációs forduló [gravity turn] egy manőver amellyel a járművek felemelkedhetnek a égitest körüli pályára, vagy leszállhatnak a felszínre, miközben a lehető legkevesebb hajtóanyagot használják fel. A felszíntől való elszakadáshoz a járműnek nagyobb erővel kell emelkednie, mint amekkorával a tömegvonzás visszahúzza. A stabil pályához a járműnek kellően nagy magasságban elég nagy oldalirányú sebességének kell lennie, hogy elkerülje a felszíni képződményeknek való ütközést és a légköri súrlódás be lassítsa le, már ha van légkör. A gravitációs forduló ezt a két lépést egyetlen manőverben köti össze, az eljárás során az üzemanyagot kímélve. Ahogy a jármű függőlegesen emelkedik, egy kis rásegítésre lassan oldalra billen amíg végül teljesen oldalsó irányba fordul.

Analógiaként képzeljünk el egy pályára emelkedést gravitációs forduló nélkül: a jármű függőlegesen felemelkedne aztán 90 fokkal elfordulna amint elérte a pályamagasságot. Gondoljunk a gravitációs fordulóra, mint egy "lekerekítésre". Ez egy rövidebb út, így üzemanyagot spórol meg.

Ez a hatékonyság alkalmazható a keringési pályáról történő leszállásnál is. Ahelyett, hogy az összes vízszintes sebességet eltüntetnénk az elején egy kiadós ellenégetéssel a felszínre való lassú leereszkedés előtt, hatékonyabban lehet leszállni, ha a vízszintes és a függőleges sebesség egyszerre történő csökkentésével.

Mechanika

A rakétára ható erők az indulás után
A rakétára ható erők a rakéta 30°-os bedöntése után

A gravitációs forduló a tömegvonzás ellen a lehető legkevesebbet dolgozik amely lehetővé teszi a manőverhez szükséges szintmagasság és vízszintes sebesség gyűjtését. Mivel az adott égitest tömegvonzása mindig vonzza a járművet, amely mindig lassan gyorsít oldalirányban mikor csak kissé tér tér el a függőlegestől, és sokkal gyorsabban, ha a jobban be van döntve a jármű. Amíg az elindult jármű függőlegesen halad felfelé akkor a hatékonyan költi a Δv-t a magassághoz anélkül, hogy akár a legkevesebb oldalirányú sebességet gyűjtené amely a keringéshez szükséges lenne. Rövideden a hosszan tartó függőleges indulás a legkevésbé hatékony.

A felemelkedéskor a gravitációs fordulót a következőként lehet végrehajtani. Feltételezve a lapos indulási helyszínt, a manőver egy függőleges indulással kezdődik, egy bizonyos magasság elérése után egy enyhe bedöntés [pitchover maneuver] következik. A függőlegestől való kis eltérés a sebességvektort lassan elkezdi befordítani a járművet a bedöntés irányába. Ahogy ez történik a jármű lassan növelni kezdi a vízszintes sebességét, amely nem közvetlenül a tömegvonzás ellen hat, de a centrifugális erő hatására folytonosan csökkenti a tömegvonzás hatását - ezzel hatékonyan megtakarítva a hajtóanyagot és az időt. Minél nagyobb az oldalirányú befordulás, annál nagyobb rész növeli tovább a sebességet, és annál kevesebb hajtóanyag használódik a tömegvonzás leküzdésére. Mivel a helyes alkalmazás esetén ennek az irányváltozásnak nagyobb része a gravitáció következménye, újabb kisebb hajtóanyag takarítható meg. A gravitációs forduló végén már a tömegvonzás leküzdésére nem veszik el több hajtóanyag. Ha a jármű elég vízszintes sebességet szerzett egy a hegyek és a légkör feletti magasságban, akkor sikerül stabil keringési pályára állnia.

A gravitációs forduló pályaíve több tényezőtől függ. A légkörrel rendelkező égitesteknél a légnyomás és annak változása erősen befolyásoló tényező.

Időzítés [Timing]

Hogy mikor mekkora a bedőlés a gravitációs forduló során, az három dologtól függ:

  1. Bármely lehetséges akadály a pályagörbén
  2. A légkör sűrűsége és annak változása, valamint a jármű légellenállási tényezője
  3. Az adott égitest gravitációjának nagysága és a jármű tolóerő-súly aránya (TWR)

Bármely dombot vagy hegyet az repülési útvonalon nyilvánvalóan el kell kerülni. Ha az akadályok elkerülése céljából megváltozik a fordulás magassága az ütközést elkerülő útvonal már nem a leghatékonyabb útvonal.

A légkör nélküli égitesteken a felemelkedő járműveknek nem kell aggódniuk a légellenállás miatt, és ennek megfelelően a bedöntést az elrugaszkodás után azonnal meg lehet kezdeni az elfordulást és olyan gyorsan lehet közelíteni a vízszintes helyzetet, amennyire a TWR és a környező terepviszonyok megengedik. Ezt cselekedve minimalizálni lehet a tömegvonzás ellen dolgozó tolóerő arányát és maximalizálni a vízszintes gyorsítást amely a pálya eléréséhez szükséges.

A légkörrel rendelkező égitesteken az időzítés és a dőlés szöge lényeges a gravitációs forduló sikeressége és hatékonysága szempontjából. Ha egy jármű túl későn fordul vagy túl kevéssé, akkor több hajtóanyagot veszít a tömegvonzás ellenében, mint amennyit a légellenálláson megtakarít. Ha a jármű túl hamar vagy túl nagy mértékben fordul el, akkor hosszabb ideig halad a légkörön keresztül, és több hajtóanyagot igényel a légellenállás leküzdése. Ha a fordulás következtében a jármű vízszintes helyzetbe kerül mielőtt elérné a légkör határát, akkor a hajónak több Δv-t kell a megfelelő magasságszint eléréséhez, ha az adott fokozat TWR-je megengedi. Ha nem, akkor elkerülhetetlen a felszínnek ütközés.

Az adott égitest gravitációjának erejének is megvan a hatása. Az erős tömegvonzással rendelkező égitesteken a tolóerő nagyobb része fordítódik a tömegvonzás leküzdésére, kisebb részt hagyva a magasság növelésére és az oldalirányú sebesség növelésére. Ilyen égitesteken magas fordulót jelent enyhe szöggel. Következésként az alacsony gravitációjú égitesteken alacsonyan lehet elkezdeni a fordulást és élesebb szögben. A jármű TWR-je szintén befolyásolja a fordulást. A magas TWR több szétosztható tolóerőt jelent, így kisebb arányban kell a tömegvonzás leküzdésére fordítani és több marad a vízszintes sebesség növelésére. E annyit jelent, hogy egy magasabb TWR-rel rendelkező jármű alacsonyabban és élesebb szögben fordulhat, amely többnyire hatékonyabb felemelkedést és kisebb Δv igényt jelent.