Cheat sheet
From Kerbal Space Program Wiki
Kerbal Space Program rocket scientist's cheat sheet: Delta-v maps, equations and more for your reference so you can get from here to there and back again.
Contents
Mathematics
Delta-v (Δv)
Basic calculation
Use the atmospheric and vacuum thrust values for atmospheric and vacuum Δv, respectively.
Transitional Δv (true Δv when launching from Kerbin)
- How to calculate the Δv of a rocket stage that transitions from Kerbin atmosphere to vacuum.
- Assumption: It takes approximately 1000 m/s2 of Δv to escape Kerbin's atmosphere before vacuum Δv values take over for the stage powering the transition.
- Note: This equation is an approximation and not completely accurate, so the results will vary a bit depending on the TWR and such. The result is accurate enough for normal purposes though.
- Equation:
- Explained:
- Example:
- Single stage with total atmospheric Δv of 5000 m/s2 and with a Δv of 6000 m/s2 in vacuum.
Δv maps
Various maps developed by KSP fans.
- Δv Total Values
- http://wiki.kerbalspaceprogram.com/w/images/7/73/KerbinDeltaVMap.png
- http://www.skyrender.net/lp/ksp/system_map.png
- Δv Change Values
- Δv KSP Nomogram
Thrust to weight ratio (TWR)
- This is Newton's Second Law.
- If ratio is less than 1, the craft will not lift off the ground.
- Equation:
- Explained:
- Example:
- 200 kN rocket engine under a 15 t rocket launching from Kerbin.
- The TWR is higher than 1, so the craft will lift off!
Combined specific impulse (Isp)
- If the Isp is the same for all engines in a stage, then the Isp is equal to a single engine. So six engines with 200 s of Isp still yield only an Isp of 200 s.
- If the Isp is different for engines in a single stage, then use the following equation:
- Equation:
- Explained:
- Example:
- Two engines, the first one with 200 N of thrust and 120 s of Isp; the second one with 50 N of thrust and 200 s of Isp.
See also
Links to collections of reference materials.