Difference between revisions of "Gravity turn/ru"
(→Обратите внимание) |
(→Соотношение силы тяги к весу (TWR)) |
||
Line 31: | Line 31: | ||
For an example of proper turn timing and amount, the most efficient gravity turn on [[Kerbin]] begins around 10 kilometers, with the ship and vector marker facing 30 to 40 degrees above the artificial horizon. | For an example of proper turn timing and amount, the most efficient gravity turn on [[Kerbin]] begins around 10 kilometers, with the ship and vector marker facing 30 to 40 degrees above the artificial horizon. | ||
== Соотношение силы тяги к весу (TWR) == | == Соотношение силы тяги к весу (TWR) == | ||
− | + | [[Thrust-to-weight ratio/ru|Соотношение тяги к весу (TWR)]] [[Craft/ru|аппарата]] значительно влияет на его гравитационный маневр. Сжигание топлива постоянно продолжает повышать [[Thrust-to-weight ratio/ru|соотношение тяги к весу]] [[Craft/ru|аппарата]]. [[Thrust-to-weight ratio/ru|Соотношение тяги к весу]] также изменяется при [[Staging/ru|отделении ступеней]], повышаясь из-за потери пустых [[Fuel tank/ru|топливных баков]], и понижаясь из-за потери [[Engines/ru|двигателей]]. Если [[Craft/ru|аппарат]] совершит слишком резкий гравитационный маневр, то он может полностью исчерпать свои наиболее мощные первые [[Stage/ru|ступени]] прежде, чем выйдет за пределы [[atmosphere/ru|атмосферы]] и использовать [[Stage/ru|ступень]], предназначенную для большей высоты, но, в данных условиях, имеющую слишком низкое [[Thrust-to-weight ratio/ru|соотношение тяги к весу]], чтобы бороться с силой гравитации, что, в конечном счете, приведет к столкновению с поверхностью. Если [[Craft/ru|аппарат]] совершит слишком узкий гравитационный маневр, то он может потратить свои наиболее мощные первые [[Stage/ru|ступени]] и достичь высоты выше границ [[atmosphere/ru|атмосферы]], и тогда использовать [[Stage/ru|ступень]] с [[Thrust-to-weight ratio/ru|соотношением тяги к весу]] не достаточно мощным, чтобы достичь орбиты, в конечном итоге, повторно входя в атмосферу и сталкиваясь с поверхностью. | |
+ | |||
== Обратите внимание == | == Обратите внимание == | ||
* {{Wikipedia}}; | * {{Wikipedia}}; |
Revision as of 14:06, 10 September 2014
Гравитационный маневр (англ. "gravity turn") - это маневр, используемый для запуска аппарата на, или его спуска с орбиты вокруг небесного тела при минимальном потреблении топлива. Для отрыва от поверхности, аппарат должен набирать высоту быстрее, чем сила тяжести его притягивает. Для поддержания стабильной орбиты, у аппарата должен быть достаточный поперечный импульс на достаточной высоте, чтобы избежать столкновения с какими-либо неровностями рельефа или замедления атмосферой, если таковые имеются. Гравитационный маневр совмещает эти два действия в один маневр, экономя топливо в процессе. Поскольку аппарат начинает взлетать вертикально, то он медленно поворачивается на бок, и летит параллельно поверхности небесного тела, с которого был запущен.
Для сравнения, представим себе достижение орбиты без гравитационного маневра: это должен быть прямой полет, вертикально к поверхности, затем - поворот на 90 градусов при достижении высоты достаточной для достижения орбиты. Считайте, что гравитационный маневр - это "сокращение угла", так сказать. Он - наиболее короткий путь и, таким образом, экономит больше топлива.
Такая эффективность также применима при спуске с орбиты. Вместо уничтожения всей горизонтальной скорости и последующего медленного спуска на поверхность, в действительности, наиболее эффективно замедлить свои горизонтальную и вертикальную скорости одновременно.
Механика
Гравитационные маневры используют гравитацую, что бы разогнаться. Gravity turns work by fighting gravity the least amount possible to gain enough altitude and horizontal speed for the desired maneuver. Since the gravity of the local celestial body is always pulling on the craft, it will always accelerate most slowly when pointing directly away from that body and would accelerate faster in any other direction than straight vertical. If a launched craft followed a purely vertical flight path, then it would spend all of its thrust accelerating in the slowest direction, effectively spending the most Delta-V to gain the least speed without gaining any lateral speed necessary to orbit. In other words, a straight vertical launch is the least efficient launch.
The gravity turn maneuver is accomplished as follows. Assuming a perfectly flat launch site, the maneuver begins as a vertical launch, then once a certain altitude is reached, a slight turn is made. By turning away from vertical slightly, gravity will pull the velocity vector of the craft down towards that direction and the craft will tilt to follow it. As this happens, the craft will gain more speed sooner since it is travelling in a vector that is not directly opposed to gravity, effectively saving fuel and time. The farther the vector tilts to the side, the percentage of thrust spent fighting gravity becomes smaller and the percentage of thrust spent gaining speed becomes larger. Since the majority of this vector change is done by gravity and not by the flight controls, another tiny amount of fuel is saved. By the end of the gravity turn, no fuel is wasted fighting gravity. If the craft has gained enough lateral speed at an altitude above any mountains or atmosphere, it then begins a stable orbit.
The altitude to start a gravity turn at depends on several factors. On bodies with atmospheres, drag also comes into determining the most efficient gravity turn.
Расчет
When to begin and the amount of tilt in a gravity turn are based mainly on three things:
- any possible obstructions in your flight path
- the density of any atmosphere
- the gravity of the local body and by extension the craft's thrust-to-weight ratio (TWR)
Any hill or mountain in your flight path should obviously be avoided. While changing the height of the turn to clear an obstacle may not be the most efficient flight path for a gravity turn, it will avoid a collision.
On bodies with no atmospheres, a launched craft need not worry about any drag generated, and thus should turn to face near horizontal as early as possible given its TWR and the height of nearby surface features. Doing this minimizes the percentage of thrust spent resisting gravity, while maximizing the percentage of thrust spent gaining enough horizontal speed to achieve orbit.
On planets with an atmosphere however, timing and amount of tilt are crucial to the success and efficiency of a gravity turn. If a craft turns too late or too little in its flight, it will waste more fuel fighting gravity than would be used resisting drag. If a craft turns too early or too far, it will travel a longer distance through the atmosphere, losing more speed to drag, requiring more fuel to regain that lost speed. If such a turn results in the craft pointing horizontal before arriving at an altitude above the atmosphere, then the craft will have to spend more delta-V to gain the necessary altitude, if the TWR of the current stage allows it. If not, then it will result in an inevitable surface collision.
The gravity strength of the local body also comes into effect. On bodies with very strong gravity wells, a larger portion of thrust must be spent fighting gravity, leaving a smaller portion of thrust to spend gaining altitude and lateral speed. On such a body, that means a high turn at a narrow angle. Conversely, on a body with very light gravity, the turn can be low at a sharper angle. The craft's TWR also affects when to begin a turn. Crafts with very high TWRs will have plenty of thrust to spare, so they can spend a smaller percentage of their thrust fighting gravity and a larger percentage gaining lateral speed. This means that such a craft can make their gravity turns lower and sharper than a craft with a low TWR.
Gravity turns are not always perfect. The most efficient gravity turn will have a continuous burn right up to completing circularization. Factors like TWR changing as the craft flies and human reaction time keep them from being perfect. In such a scenario, the craft may need to pause its burn once any atmosphere is escaped, coast to apoapsis and then do a circularization burn.
For an example of proper turn timing and amount, the most efficient gravity turn on Kerbin begins around 10 kilometers, with the ship and vector marker facing 30 to 40 degrees above the artificial horizon.
Соотношение силы тяги к весу (TWR)
Соотношение тяги к весу (TWR) аппарата значительно влияет на его гравитационный маневр. Сжигание топлива постоянно продолжает повышать соотношение тяги к весу аппарата. Соотношение тяги к весу также изменяется при отделении ступеней, повышаясь из-за потери пустых топливных баков, и понижаясь из-за потери двигателей. Если аппарат совершит слишком резкий гравитационный маневр, то он может полностью исчерпать свои наиболее мощные первые ступени прежде, чем выйдет за пределы атмосферы и использовать ступень, предназначенную для большей высоты, но, в данных условиях, имеющую слишком низкое соотношение тяги к весу, чтобы бороться с силой гравитации, что, в конечном счете, приведет к столкновению с поверхностью. Если аппарат совершит слишком узкий гравитационный маневр, то он может потратить свои наиболее мощные первые ступени и достичь высоты выше границ атмосферы, и тогда использовать ступень с соотношением тяги к весу не достаточно мощным, чтобы достичь орбиты, в конечном итоге, повторно входя в атмосферу и сталкиваясь с поверхностью.
Обратите внимание
- Gravity turn on Wikipedia;
- Гравитационный маневр в Википедии;