Difference between revisions of "Tutorial:Advanced Rocket Design/fr"

From Kerbal Space Program Wiki
Jump to: navigation, search
m (XZise moved page Advanced Rocket Design/fr to Tutorial:Advanced Rocket Design/fr: use tutorial prefix)
(Delta-V)
Line 4: Line 4:
 
''Apprendre à construire une fusée basique pour un jeu de simulation spatiale comme Kerbal Space Program peut être extrêmement important pour le succès de la construction de fusées souhaitées dans le cadre d'une mission précise. Dans ce guide, nous allons couvrir des sujets tels que calculer du Delta-V de notre vaisseau, expliquer comment réussir un transfert de manoeuvre, obtenir le rapport de poussée sur poids, calculer les poussées de force gravitation (G-force) durant une séquence d'accélération particulière, ou encore calculer le Delta-V nécessaire pour un transfert Hohmann complet et beaucoup plus encore.''
 
''Apprendre à construire une fusée basique pour un jeu de simulation spatiale comme Kerbal Space Program peut être extrêmement important pour le succès de la construction de fusées souhaitées dans le cadre d'une mission précise. Dans ce guide, nous allons couvrir des sujets tels que calculer du Delta-V de notre vaisseau, expliquer comment réussir un transfert de manoeuvre, obtenir le rapport de poussée sur poids, calculer les poussées de force gravitation (G-force) durant une séquence d'accélération particulière, ou encore calculer le Delta-V nécessaire pour un transfert Hohmann complet et beaucoup plus encore.''
  
==Delta-V==  
+
==Delta-V==
Le <math>\Delta  
+
<math>\Delta v</math> (change in velocity) is the bread and butter of rocket science. It is probably the most important thing to know about your rocket because it determines what your rocket is capable of achieving. Among the several things we will explain in this basic tutorial, <math>\Delta v</math> is most likely the most useful thing you will apply to Kerbal Space Program while building a rocket.  
v</math> (changement de vitesse) est l'alpha et l'oméga de l'astronautique. C'est probablment la chose la plus importante à savoir sur votre fusée parce qu'il détermine ce que votre fusée est capable d'accomplir. Parmi les différentes choses que nous allons expliquer dans ce tutoriel basique, le <math>\Delta v</math> est la chose la plus utile que vous appliquerez dans KSP lorsqu'il s'agira de construire une fusée.
+
To find the <math>\Delta v</math> of your rocket for each stage at a time we have to sum up the part masses of every single part of the stage.
Pour trouver le <math>\Delta v</math> de votre fusée -- chaque étape à la fois -- nous avons à additionner la masse des parts de chaque étage. Quand nous aurons additionné la masse des réservoirs d'essence (fuel tank), il devrait être plus facile de les écrire comme ceci sur votre papier :
 
  
Masse réservoirs remplis : x<br />
+
* Total mass: <math>m_\text{total}</math>
Masse à sec : x
+
* Fuel mass: <math>m_\text{fuel}</math>
 +
* Dry Mass: <math>m_\text{dry} = m_\text{total} - m_\text{fuel}</math>
  
La raison de faire cela est que cela sera plus facile de calculer la masse totale et la masse "à vide". Donc, additionnez simplement la masse de votre étage.
+
The equation only needs the total and dry mass, but as it is easier to get the fuel mass we calculate the dry mass by subtracting the fuel mass from the total mass. Of course other combinations like calculating the total mass and measuring the fuel and dry mass are also possible.
  
La prochaine partie importante de cette série de calculs et de trouver l'impulsion spécifique de votre moteur. L'impulsion spécifique est une mesure de l'économie en carburant d'un moteur (plus grande sera l'impulsion spécifique, plus économe sera votre moteur).  
+
The next important part of this set of calculations is to find your engine's specific impulse. Specific impulse is a measure of how fuel efficient an engine is (the greater the specific impulse, the more fuel efficient it is). For example, the non-vectoring stock engine [[LV-T30 Liquid Fuel Engine|LV-T30]] has a vacuum specific impulse of 370 s. So here, we must apply the [[w:Tsiolkovsky rocket equation|Tsiolkovsky rocket equation]]. More informally known as "The Rocket Equation".  
Par exemple, le moteur de base non-orientable a un impulsion spécifique dans le vide de 370s. Donc ici, nous devons appliquer le [http://en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation Tsiolkovsky  
 
Rocket Equation]. More informally known as "The Rocket Equation".  
 
  
It
+
It states:
states: <math>\Delta v = 9.81 \frac{m}{s^2}\cdot I_{sp}\cdot  
+
:<math>\Delta v = I_{sp}\cdot \ln\left(\frac{m_\text{total}}{m_\text{dry}}\right)</math>
\ln\left(\frac{m_1}{m_2}\right)</math>.<br />
+
If the specific impulse is given in seconds it is necessary to multiply this value by <math>9.82\frac{m}{s^2}</math> (see also [[Terminology#isp|Terminology about I<sub>sp</sub>]]).
<math>m_1</math>
 
= total mass of the stage (including subsequent stages),
 
<math>m_2</math> = dry mass of the stage
 
  
So
+
So go ahead and sum up your stage's total mass with fuel. Then, go ahead and sum up the mass minus the fuel (this can be done by just adding up the 'dry mass' where given). Input these into the equation in the place of <math>m_\text{total}</math> and <math>m_\text{dry}</math>. Following is a quick example, where the surface gravity of Earth <math>9.81\frac{m}{s^2}</math> is used:
go ahead and sum up your stage's full mass with fuel. Then, go ahead  
 
and sum up the mass minus the fuel (this can be done by just adding up  
 
the 'dry mass' where given). Input these into the equation in the place  
 
of <math>m_1</math> and <math>m_2</math>. So, we
 
will show a quick example, here:
 
  
[[File:Advanced Rocket Design example.png]]
+
[[File:Advanced Rocket Design example.png|thumb|Example rocket]]
  
'''Stage
+
{| class="wikitable"
3 (TMI, Mun lander, Return):'''
+
! colspan="2" | Stage 3 (TMI, Mun lander, Return)
{|
 
|Full mass: ||
 
<math>3.72 kg</math>
 
 
|-
 
|-
|Dry mass: ||  
+
| Full mass: || <math>3.72t</math>
<math>1.72kg</math>
 
 
|-
 
|-
|<math>I_{sp}</math>:
+
| Dry mass: || <math>1.72t</math>
|| <math>400 s</math>
 
 
|-
 
|-
|<math>\Delta
+
| I<sub>sp</sub>: || <math>400 s</math>
v</math>: || <math>3027.0 \frac ms</math>
+
|-
|}
+
| Δv: || <math>3027.0 \frac ms</math>
 
+
|-
'''Stage
+
! colspan="2" | Stage 2 (Kerbin orbit insertion)
2 (Kerbin orbit insertion)'''
+
|-
{|
+
| Full mass: || <math>7.27t</math>
|Full mass: ||  
+
|-
<math>7.27kg</math>
+
| Dry mass: || <math>5.27t</math>
 +
|-
 +
| I<sub>sp</sub>: || <math>370 s</math>
 +
|-
 +
| Δv: || <math>1167.8 \frac ms</math>
 +
|-
 +
! colspan="2" | Stage 1 (Ascent):
 
|-
 
|-
|Dry mass: ||  
+
| Full mass: || <math>38.52t</math>
<math>5.27kg</math>
 
 
|-
 
|-
|<math>I_{sp}</math>:
+
| Dry mass: || <math>14.52t</math>
|| <math>370 s</math>
 
 
|-
 
|-
|<math>\Delta
+
| I<sub>sp</sub>: || <math>350 s</math> (estimated due to atmospheric flight)
v</math>: || <math>1167.8 \frac ms</math>
 
|}
 
 
 
'''Stage
 
1 (Ascent):'''
 
{|
 
|Full mass: ||
 
<math>38.52kg</math>
 
 
|-
 
|-
|Dry mass: ||  
+
| Δv: || <math>3349.9 \frac ms</math>
<math>14.52kg</math>
 
 
|-
 
|-
|<math>I_{sp}</math>:
+
! colspan="2" | Total
|| <math>350 s</math> (estimated due to atmospheric flight)
 
 
|-
 
|-
|<math>\Delta
+
| Δv: || <math>7544.6 \frac ms</math>
v</math>: || <math>3349.9 \frac ms</math>
 
 
|}
 
|}
<br
 
/>
 
Total <math>\Delta v</math>: <math>7544.6
 
\frac ms</math>
 
 
 
''Note:''
 
To
 
calculate the <math>I_{sp}</math> for multiple engines with
 
different <math>I_{sp}</math> values, you need to take the
 
weighted average of the specific impulses relative to thrust. The
 
equation looks like this:
 
<math>\frac {I_{sp_1}\cdot
 
thrust_1 + I_{sp_2}\cdot thrust_2 + \dots}{thrust_1 + thrust_2 +
 
\dots}</math>
 
 
This will give you the correct
 
<math>I_{sp}</math> to use for your <math>\Delta
 
v</math> calculation.
 
 
==Calculating transfer
 
maneuvers==
 
The next very basic part of this tutorial is how to
 
perform a transfer maneuver itself. This kind of action is called a
 
[http://en.wikipedia.org/wiki/Hohmann_transfer_orbit Hohmann Transfer]
 
and it requires two burns at opposite points in an orbit. Adding
 
velocity will boost our apoapsis higher. We would then simply wait until
 
we hit our newly established Apoapsis and then add more velocity to
 
boost our Periapsis to circularize. Or, we could drop our orbit by
 
subtracting velocity by burning retro-grade.
 
 
We can
 
also apply some <math>\Delta v</math> calculations to find
 
out how much thrust we will need to perform this maneuver. We will break
 
this burn up into impulses. For example purposes, we will start at a
 
100Km orbit and then boost into a 200Km orbit. Both circularized. The
 
formula for the first burn is the following:
 
 
<math>\Delta
 
 
v_1=\sqrt{\frac\mu{r_1}}\Bigg(\sqrt{\frac{2r_2}{r_1+r_2}}-1\Bigg)</math>
 
 
This
 
is the formula for the final burn in the transfer:
 
 
<math>\Delta
 
 
v_2=\sqrt{\frac\mu{r_2}}\Bigg(1-\sqrt{\frac{2r_1}{r_1+r_2}}\Bigg)</math>
 
  
Where:<br
+
=== Multiple engines ===
/>
+
To calculate the I<sub>sp</sub> for multiple engines with different I<sub>sp</sub> values, you need to find total thrust and mass flow:
<math>\mu</math>= Gravitational Parameter of
+
:<math>I_{sp_{avg}} = \frac{\sum\limits_i^n(thrust_i)}{\sum\limits_i^n(\dot m_i\cdot g_0)} = \frac{\sum\limits_i^n(thrust_i)}{\sum\limits_i^n\left(\frac{thrust_i}{I_{sp_i}}\right)} = \frac {thrust_1 + thrust_2 + \dots + thrust_n}{thrust_1\div I_{sp_1} + thrust_2\div I_{sp_2} + \dots + thrust_n\div I_{sp_n}}</math>
Parent Body. (3530.461 km³/s² for [[Kerbin]]).<br />
 
<math>r_1</math>=
 
The Radius of our first orbit. (100 km in this case).<br />
 
<math>r_2</math>=
 
The Radius of our second orbit. (200 km in this case).
 
  
This
+
This will give you the correct I<sub>sp</sub> to use for your Δv calculation. If all engines are the same, they act as one engine in this calculation so the sums aren't needed.
formula will give us our velocity for the burn in km/s (multiply by
 
1000 to convert it into m/s).
 
It's important to make sure that
 
you will have the <math>\Delta v</math> in the stage to make
 
this burn. Again, you can do that by using the <math>\Delta
 
v</math> calculations above.
 
  
 
==Calculating fuel flow==
 
==Calculating fuel flow==

Revision as of 08:04, 23 April 2014

Page originale Par Vincent McConnell et Kosmo-not, traduite par Maneth. Traduction non finie.

Introduction:

Apprendre à construire une fusée basique pour un jeu de simulation spatiale comme Kerbal Space Program peut être extrêmement important pour le succès de la construction de fusées souhaitées dans le cadre d'une mission précise. Dans ce guide, nous allons couvrir des sujets tels que calculer du Delta-V de notre vaisseau, expliquer comment réussir un transfert de manoeuvre, obtenir le rapport de poussée sur poids, calculer les poussées de force gravitation (G-force) durant une séquence d'accélération particulière, ou encore calculer le Delta-V nécessaire pour un transfert Hohmann complet et beaucoup plus encore.

Delta-V

(change in velocity) is the bread and butter of rocket science. It is probably the most important thing to know about your rocket because it determines what your rocket is capable of achieving. Among the several things we will explain in this basic tutorial, is most likely the most useful thing you will apply to Kerbal Space Program while building a rocket. To find the of your rocket for each stage at a time we have to sum up the part masses of every single part of the stage.

  • Total mass:
  • Fuel mass:
  • Dry Mass:

The equation only needs the total and dry mass, but as it is easier to get the fuel mass we calculate the dry mass by subtracting the fuel mass from the total mass. Of course other combinations like calculating the total mass and measuring the fuel and dry mass are also possible.

The next important part of this set of calculations is to find your engine's specific impulse. Specific impulse is a measure of how fuel efficient an engine is (the greater the specific impulse, the more fuel efficient it is). For example, the non-vectoring stock engine LV-T30 has a vacuum specific impulse of 370 s. So here, we must apply the Tsiolkovsky rocket equation. More informally known as "The Rocket Equation".

It states:

If the specific impulse is given in seconds it is necessary to multiply this value by (see also Terminology about Isp).

So go ahead and sum up your stage's total mass with fuel. Then, go ahead and sum up the mass minus the fuel (this can be done by just adding up the 'dry mass' where given). Input these into the equation in the place of and . Following is a quick example, where the surface gravity of Earth is used:

Example rocket
Stage 3 (TMI, Mun lander, Return)
Full mass:
Dry mass:
Isp:
Δv:
Stage 2 (Kerbin orbit insertion)
Full mass:
Dry mass:
Isp:
Δv:
Stage 1 (Ascent):
Full mass:
Dry mass:
Isp: (estimated due to atmospheric flight)
Δv:
Total
Δv:

Multiple engines

To calculate the Isp for multiple engines with different Isp values, you need to find total thrust and mass flow:

This will give you the correct Isp to use for your Δv calculation. If all engines are the same, they act as one engine in this calculation so the sums aren't needed.

Calculating fuel flow

Next, we will explain how to calculate fuel flow in mass to see how much fuel a burn uses up in a specific amount of time.

If we know the needed for the burn and the total mass

of the rocket before the burn, we can calculate how much fuel is 

required to complete the burn.

First, we calculate the mass of the rocket after the burn is complete. To do this, we use the Tsiolkovsky Rocket Equation, inputting the initial mass and of the burn. We can then solve the equation for the final mass after the burn. The difference between these

two masses will be used to determine the length of time that is needed 

to complete the burn.

The equation for mass flow rate of fuel, given and thrust, is:

where is the mass flow rate of fuel consumed (in seconds)

Dividing the difference between initial mass and final mass for the burn by the mass flow rate of fuel, we arrive at how many seconds are required.

Note: The

mass flow rate of fuel can be converted into the consumption rate of 

the fuel units used in KSP (Liters, I presume). The conversion ratio is 1

mass unit per 200l of fuel.

Orbital velocity

Rather easy is the formula to calculate the orbital velocity of an orbit. This assumes circular orbit or the velocity of a specific point in an orbit. For this, we simply do this calculation:

Where:

= Gravitational Parameter of parent body. (km³/s²)

= radius of orbit. (km)

If we input the radius of the orbit in Kilometers, our orbital velocity will come out in Kilometers per second. In a 100km orbit, our radius will be 700km. Meaning our velocity will be ~2.2458 kilometers per second (km/s), or 2245.8 m/s.

Delta-v map

A map consists of approximate amounts of needed to get from one place (whether it is on the ground or in space) to another. The values we have for our map are approximate and include a fudge factor (in case we slip up on our piloting). Our map is as follows:

Launch to

100km Kerbin orbit: || 4700 m/s

Trans-Munar Injection: 900 m/s
Landing on the Mun: 1000 m/s
Launch
from Mun and return to Kerbin: || 1000 m/s
Total

: || 7600 m/s

If

we design our rockets to have 7600 total , and the acceleration of the launch stages are adequate, 

we can have confidence that our rocket is able to land on the Mun and return to Kerbin. A rocket with a little less can accomplish this goal, but it is less forgiving of less efficient piloting.

==Thrust to Weight Ratio== Calculating Thrust to Weight Ratio is only three very simple steps.

It is important to know the thrust to weight ratio of your rocket to ensure your rocket will actually liftoff.

If your TWR is less than 1, you can bet that you won t make an inch in 

altitude when starting from the launch pad. The minimum optimal TWR to have for your rocket at launch is 2.2.

The formula for this is simply the thrust of all of your current stage engines divided by the weight (mass * 9.81 m/s²) of your ship, fully fueled. At the same

time, this will give you the minimum G-force you can expect on the 

current stage. Your peak G-force will occur instantly before fuel depletion. The way to calculate this is to simply divide thrust by the dry mass of your stage+the fully fueled stages above it.


In

conclusion: This guide will hopefully have helped with designing your 

rockets to allow you to get the job done -- whatever it may be -- with no test flights first. We hope this guide has been helpful to new and continuing KSP pilots alike.