Difference between revisions of "Tutorial:Advanced Rocket Design/fr"

From Kerbal Space Program Wiki
Jump to: navigation, search
(Calculate the acceleration)
m (Moved to /fr category)
 
(39 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Page originale par ''Vincent McConnell'' et ''Kosmo-not'', traduite et completée par ''Mixoupe''. Traduction non finie.
+
Concevoir des fusées dans un jeu comme Kerbal Space Program peut nécessiter une certaine connaissance de la [http://fr.wikipedia.org/wiki/M%C3%A9canique_spatiale mécanique spatiale] et [http://fr.wikipedia.org/wiki/Man%C5%93uvre_orbitale orbitale]. Dans ce tutoriel, nous aborderons des sujets comme le calcul des delta-v, des manœuvres de transfert, du ratio poussée-poids, des forces qui s'exercent sur le vaisseau pendant une poussée et bien plus encore...
  
===Introduction:===
+
==Delta-v==
''Apprendre à construire une fusée basique pour un jeu de simulation spatiale comme Kerbal Space Program peut être extrêmement important pour le succès de la construction de fusées souhaitées dans le cadre d'une mission précise. Dans ce guide, nous allons couvrir des sujets tels que calculer du Delta-V de notre vaisseau, expliquer comment réussir un transfert de manoeuvre, obtenir le rapport de poussée sur poids, calculer les poussées de force gravitation (G-force) durant une séquence d'accélération particulière, ou encore calculer le Delta-V nécessaire pour un transfert Hohmann complet et beaucoup plus encore.''
+
Le delta-v (<math>\Delta v</math>, variation de vitesse) est le B A BA de la mécanique spatiale. C'est sûrement la chose la plus importante à connaître de votre fusée car c'est ce qui définit ce qu'elle est capable de réaliser. De ce que nous allons expliquer dans ce tutoriel de base, le <math>\Delta v</math> est probablement l'aspect le plus utile que vous aurez a appliquer dans Kerbal Space Program.  
 
 
==Delta-V==
 
Le <math>\Delta v</math> (variation de vitesse) est le B A Ba de la mécanique spatiale. C'est sûrement la chose la plus importante à connaître de votre fusée car c'est ce qui définit ce que votre fusée est capable de réaliser. De ce que nous allons expliquer dans ce tutoriel de base, le <math>\Delta v</math> est probablement l'aspect le plus utile que vous aurez a appliquer dans Kerbal Space Program.  
 
  
 
Pour calculer le <math>\Delta v</math> de chaque étage de votre véhicule spatial, il faut commencer par additionner les masses de tous les composants de l'étage.
 
Pour calculer le <math>\Delta v</math> de chaque étage de votre véhicule spatial, il faut commencer par additionner les masses de tous les composants de l'étage.
  
* Masse totale : <math>m_\text{total}</math>
+
* Masse totale : <math>m_\text{totale}</math>
 
* Masse de carburant (fuel) : <math>m_\text{fuel}</math>
 
* Masse de carburant (fuel) : <math>m_\text{fuel}</math>
* Masse sèche (dry) : <math>m_\text{dry} = m_\text{total} - m_\text{fuel}</math>
+
* Masse sèche : <math>m_\text{sèche} = m_\text{totale} - m_\text{fuel}</math>
  
 
L'équation du <math>\Delta v</math>  ne nécessite que les masses totale et sèche, mais comme il est plus simple d'obtenir la masse de carburant, on calcule la masse sèche en effectuant une soustraction. Bien sûr d'autre combinaisons sont possibles.
 
L'équation du <math>\Delta v</math>  ne nécessite que les masses totale et sèche, mais comme il est plus simple d'obtenir la masse de carburant, on calcule la masse sèche en effectuant une soustraction. Bien sûr d'autre combinaisons sont possibles.
  
  
La prochaine phase de calcul est de connaître l'impulsion spécifique (specific impulse) de votre moteur. L'impulsion spécifique caractérise "l'efficacité" d'un moteur en terme de consommation de carburant. Elle se mesure en secondes (s). Plus l'impulsion spécifique d'un moteur est grande, plus il est efficace. Par exemple, le [[LV-T30 Liquid Fuel Engine|LV-T30]] a une impulsion spécifique de 370 s (dans le vide).
+
La prochaine phase de calcul est de connaître l'[http://fr.wikipedia.org/wiki/Impulsion_sp%C3%A9cifique impulsion spécifique] (specific impulse) de votre moteur. L'impulsion spécifique caractérise "l'efficacité" d'un moteur en terme de consommation de carburant. Elle se mesure en secondes (s). Plus l'impulsion spécifique d'un moteur est grande, plus il est efficace. Par exemple, le [[LV-T30 Liquid Fuel Engine|LV-T30]] a une impulsion spécifique de 370 s (dans le vide).
Nous pouvons maintenant appliquer l'[[w:Tsiolkovsky rocket equation|équation de Tsiolkovski]], une formule capitale en mécanique spatiale :
+
Nous pouvons maintenant appliquer l'[http://fr.wikipedia.org/wiki/%C3%89quation_de_Tsiolkovski équation de Tsiolkovski], une formule capitale en mécanique spatiale :
  
:<math>\Delta v = g\cdot I_{sp}\cdot \ln\left(\frac{m_\text{total}}{m_\text{dry}}\right)</math>
+
:<math>\Delta v = g\cdot I_{sp}\cdot \ln\left(\frac{m_\text{totale}}{m_\text{sèche}}\right)</math>
  
Où <math>g</math> est l'accélération de la pesanteur (<math>9.81\frac{m}{s^2}</math> au niveau du sol), <math>I_{sp}</math> est l'impulsion spécifique en secondes et <math>ln</math> est le logarithme népérien.  
+
Où <math>g</math> est l'accélération de la pesanteur (<math>9,81m/s^2</math> au niveau du sol), <math>I_{sp}</math> est l'impulsion spécifique en secondes et <math>ln</math> est le logarithme népérien.  
  
Vous pouvez y aller : faites la somme de la masse de carburant de votre étage, puis calculez la masse totale de l'étage et soustrayez-y la masse de carburant (ce qui vous donne la masse sèche). Injectez ces valeurs dans l'équation à la place de <math>m_\text{total}</math> et <math>m_\text{dry}</math>. Voici un petit exemple en prenant l'accélération de la pesanteur terrestre (la même que sur Kerbin), soit <math>g=9.81\frac{m}{s^2}</math>.
+
Vous pouvez y aller : faites la somme de la masse de carburant de votre étage, puis calculez la masse totale de l'étage et soustrayez-y la masse de carburant (ce qui vous donne la masse sèche). Injectez ces valeurs dans l'équation à la place de <math>m_\text{total}</math> et <math>m_\text{dry}</math>. Voici un petit exemple en prenant l'accélération de la pesanteur terrestre (la même que sur Kerbin), soit <math>g=9,81m/s^2</math>.
  
  
[[File:Advanced Rocket Design example.png|thumb|Exemple de fusée]]
+
[[File:Advanced Rocket Design example.png|thumb|Fusée de l'exemple]]
  
 
{| class="wikitable"
 
{| class="wikitable"
 
! colspan="2" | 3e étage (Injection trans-munaire, Mun lander, retour)
 
! colspan="2" | 3e étage (Injection trans-munaire, Mun lander, retour)
 
|-
 
|-
| Masse totale || <math>3.72t</math>
+
| Masse totale || <math>3,72t</math>
 
|-
 
|-
| Masse sèche || <math>1.72t</math>
+
| Masse sèche || <math>1,72t</math>
 
|-
 
|-
 
| I<sub>sp</sub>: || <math>400 s</math>
 
| I<sub>sp</sub>: || <math>400 s</math>
 
|-
 
|-
| Δv: || <math>3027.0 \frac ms</math>
+
| Δv: || <math>3027,0 \frac ms</math>
 
|-
 
|-
 
! colspan="2" | 2e étage (Injection en orbite de Kerbin)
 
! colspan="2" | 2e étage (Injection en orbite de Kerbin)
 
|-
 
|-
| Masse totale || <math>7.27t</math>
+
| Masse totale || <math>7,27t</math>
 
|-
 
|-
| Masse sèche || <math>5.27t</math>
+
| Masse sèche || <math>5,27t</math>
 
|-
 
|-
 
| I<sub>sp</sub>: || <math>370 s</math>
 
| I<sub>sp</sub>: || <math>370 s</math>
 
|-
 
|-
| Δv: || <math>1167.8 \frac ms</math>
+
| Δv: || <math>1167,8 \frac ms</math>
 
|-
 
|-
 
! colspan="2" | 1er étage (Ascension):
 
! colspan="2" | 1er étage (Ascension):
 
|-
 
|-
| Masse totale || <math>38.52t</math>
+
| Masse totale || <math>38,52t</math>
 
|-
 
|-
| Masse sèche || <math>14.52t</math>
+
| Masse sèche || <math>14,52t</math>
 
|-
 
|-
 
| I<sub>sp</sub>: || <math>350 s</math> (estimée car vol atmosphérique)
 
| I<sub>sp</sub>: || <math>350 s</math> (estimée car vol atmosphérique)
 
|-
 
|-
| Δv: || <math>3349.9 \frac ms</math>
+
| Δv: || <math>3349,9 \frac ms</math>
 
|-
 
|-
 
! colspan="2" | Total
 
! colspan="2" | Total
 
|-
 
|-
| Δv: || <math>7544.6 \frac ms</math>
+
| Δv: || <math>7544,6 \frac ms</math>
 
|}
 
|}
  
Line 74: Line 71:
 
==Calcul des manœuvres de transfert==
 
==Calcul des manœuvres de transfert==
  
Nous allons maintenant parler des manœuvres de transfert. C'est ce qu'on appelle effectuer un transfert suivant une [[w:Hohmann transfer orbit|orbite de Hohmann]], ce qui nécessite d'allumer le moteur aux deux points opposés de l'orbite. On augmente la vitesse au périastre, ce qui va augmenter l'altitude de votre apoastre. On attend ensuite simplement d'atteindre ce nouvel apoastre, puis on allume à nouveau le moteur pour faire monter le périastre et circulariser l'orbite. De même, on peut aussi faire baisser notre orbite en allumant le moteur dans la direction rétrograde, ce qui diminuera notre vitesse orbitale.
+
Nous allons maintenant parler des manœuvres de transfert. C'est ce qu'on appelle effectuer un transfert suivant une [http://fr.wikipedia.org/wiki/Orbite_de_transfert orbite de Hohmann], ce qui nécessite d'allumer le moteur aux deux points opposés de l'orbite. On augmente la vitesse au périastre, ce qui va augmenter l'altitude de votre apoastre. On attend ensuite simplement d'atteindre ce nouvel apoastre, puis on allume à nouveau le moteur pour faire monter le périastre et circulariser l'orbite. De même, on peut aussi faire baisser notre orbite en allumant le moteur dans la direction rétrograde, ce qui diminuera notre vitesse orbitale.
  
 
On peut appliquer une formule pour connaître combien de <math>\Delta v</math> va nous coûter une telle manœuvre. Nous considérerons les phases de poussées comme impulsionnelles, car leur durée est tellement courte par rapport à la période de l'orbite qu'on peut les considérer comme de durée nulle.
 
On peut appliquer une formule pour connaître combien de <math>\Delta v</math> va nous coûter une telle manœuvre. Nous considérerons les phases de poussées comme impulsionnelles, car leur durée est tellement courte par rapport à la période de l'orbite qu'on peut les considérer comme de durée nulle.
Line 89: Line 86:
  
 
* <math>\mu=G \cdot M_{C}</math> est un paramètre gravitationnel du corps orbité (3530,461 km³/s² pour [[Kerbin]]).
 
* <math>\mu=G \cdot M_{C}</math> est un paramètre gravitationnel du corps orbité (3530,461 km³/s² pour [[Kerbin]]).
* <math>G</math> est la constante gravitationnelle (<math>6,673 \times 10^{-11} \ \mbox{m}^3 \ \mbox{kg}^{-1} \ \mbox{s}^{-2}</math>).
+
* <math>G</math> est la [http://fr.wikipedia.org/wiki/Constante_gravitationnelle constante gravitationnelle] (<math>6,673 \times 10^{-11} \ \mbox{m}^3 \ \mbox{kg}^{-1} \ \mbox{s}^{-2}</math>).
 
* <math>M_{C}</math> est la masse du corps orbité.
 
* <math>M_{C}</math> est la masse du corps orbité.
 
* <math>r_1</math> est l'altitude de l'orbite initiale.
 
* <math>r_1</math> est l'altitude de l'orbite initiale.
Line 134: Line 131:
 
Notons enfin que les quantités de carburant sont indiquées en litres dans KSB. On peut passer des <math>kg</math> en <math>l</math> en utilisant la masse volumique du mélange carburant/comburant (liquid fuel/oxidize) qui vaut environ <math>5000kg/m^3</math>
 
Notons enfin que les quantités de carburant sont indiquées en litres dans KSB. On peut passer des <math>kg</math> en <math>l</math> en utilisant la masse volumique du mélange carburant/comburant (liquid fuel/oxidize) qui vaut environ <math>5000kg/m^3</math>
  
==Orbital velocity==
+
==Vitesse orbitale==
Rather easy is the formula to calculate the orbital velocity of an orbit. This assumes circular orbit or the velocity of a specific point in an orbit. For this, we simply do this calculation:
+
 
 +
Calculer sa vitesse orbitale est assez facile dans le cas d'une orbite circulaire, car alors cette vitesse est constante tout le long de l'orbite. Cette vitesse vaut
 +
 
 +
<math>v=\sqrt{\frac\mu r}</math>
  
<math>\sqrt{\frac\mu r}</math>
+
<math>r=R+h</math> avec <math>h</math>, l'altitude de l'orbite.
  
Where:<br />
+
Encore une fois, attention aux unités. Si vous utilisez les unités standards pour <math>\mu</math> (des <math>m^3/s^2</math>) ne mettez pas <math>r</math> en <math>km</math>, mais bien en <math>m</math>, sinon vous obtiendrez une réponse complètement fausse. Vous pouvez transformer toutes vos valeurs en utilisant des kilomètres et, par exemple, des heures, et vous obtiendrez une valeur de <math>v</math> en <math>km/h</math> au lieu de <math>m/s</math>. Une façon simple de savoir si tout est correct est de vérifier si vos résultats ont un sens. La vitesse orbitale autour de Kerbin (LKO) est d'environ <math>2 km/s</math>. Si vous trouvez <math>2000km/s</math> ou <math>2m/s</math>, il y a un problème quelque part...
<math>\mu</math> = Gravitational Parameter of parent body. (km³/s²)<br />
 
<math>r</math> = radius of orbit. (km)
 
  
If we input the radius of the orbit in Kilometers, our orbital velocity will come out in Kilometers per second. In a 100&nbsp;km orbit, our radius will be 700&nbsp;km.
+
==Bilan de delta-v==
Meaning our velocity will be ~2.2458 kilometers per second (km/s), or 2245.8&nbsp;m/s.
 
  
==Delta-v map==
+
Un bilan de delta-v consiste à prévoir en gros combien de <math>\Delta v</math> sera nécessaire pour se rendre d'un endroit (que ce soit au sol ou en orbite) à un autre. Le <math>\Delta v</math> total étant bien sûr la somme des <math>\Delta v</math> des différentes phases du vol, avec à chaque fois une marge d'erreur (du <math>\Delta v</math> en plus) en cas de fausse manœuvre ou d'imprévu. voici un exemple de bilan de delta-v :
A <math>\Delta v</math> map consists of approximate amounts of <math>\Delta v</math> needed to get from one place (whether it is on the ground or in space) to another. The <math>\Delta v</math> values we have for our <math>\Delta v</math> map are approximate and include a fudge factor (in case we slip up on our piloting). Our map is as follows:
 
  
 
{|
 
{|
|Launch to 100&nbsp;km Kerbin orbit: || 4700&nbsp;m/s
+
|Du pas de tir à une orbite de 100 km || 4700 m/s
 
|-
 
|-
|Trans-Munar Injection: || 900&nbsp;m/s
+
|Injection trans-munaire || 900 m/s
 
|-
 
|-
|Landing on the Mun: || 1000&nbsp;m/s
+
|Amunissage || 1000m/s
 
|-
 
|-
|Launch from Mun and return to Kerbin: || 1000&nbsp;m/s
+
|Décollage et retour vers Kerbin || 1000 m/s
 
|-
 
|-
|Total <math>\Delta v</math>: || 7600&nbsp;m/s
+
|Total <math>\Delta v</math> || 7600 m/s
 
|}
 
|}
  
If we design our rockets to have 7600 total <math>\Delta v</math>, and the acceleration of the launch stages are adequate, we can have confidence that our rocket is able to land on the Mun and return to Kerbin. A rocket with a little less <math>\Delta v</math> can accomplish this goal, but it is less forgiving of less efficient piloting.
+
Si nous concevons notre fusée pour avoir un <math>\Delta v</math> total de 7 600 m/s et que l'accélération de notre premier étage est adéquate, nous pouvons être sûrs que notre fusée pourra se poser sur la [[Mun]] et revenir sur [[Kerbin]]. Si votre fusée compte un peu moins de <math>\Delta v</math>, elle pourra peut-être accomplir cette mission, mais la moindre erreur de pilotage peut vous faire tomber à court de carburant avant l'atterrissage.
  
== Calculate the acceleration ==
+
== Calcul de l'accélération ==
 
{{See also|Thrust-to-weight ratio}}
 
{{See also|Thrust-to-weight ratio}}
  
Calculating the thrust-to-weight ratio is very simple. It is important to know the thrust to weight ratio of your rocket to ensure your rocket will actually liftoff. If your TWR is less than 1, you can bet that you won't make an inch in altitude when starting from the launch pad. The minimum optimal TWR to have for your rocket at launch is 2.2.
+
Nous allons parler du ratio poussée-poids (thrust-to-weight ratio ou TWR). Le calculer est assez simple et il est capital de le connaître pour savoir si votre fusée sera capable de quitter le pas de tir ou non. Si votre ratio poussée-poids est inférieur à 1, vous ne bougerez pas d'un millimètre. Le ratio poussée-poids minimum pour un départ correct se situe autour de 2,2.
 +
 
 +
La portance créée par la poussée des moteurs doit dépasser la force de gravité en surface si vous voulez décoller. La formule pour calculer le ratio est simplement la somme de la poussée des moteurs de votre premier étage (ceux qui sont actifs) divisée par le poids de votre fusée, carburant compris.
 +
 
 +
:<math>F > P = m \cdot g \implies TWR = \frac{F}{P} = \frac{F}{m \cdot g} > 1</math>
 +
 
 +
Pour calculer l'accélération, utilisez simplement la [http://fr.wikipedia.org/wiki/Lois_du_mouvement_de_Newton#Deuxi.C3.A8me_loi_de_Newton_ou_principe_fondamental_de_la_dynamique_de_translation seconde loi de Newton] :
 +
 
 +
:<math>\sum \vec F = m \cdot \vec a = F - P = F - m \cdot g = m \cdot a \implies a = \frac{F}{m} - g</math>
 +
 
 +
L'accélération est minimale au moment du départ puisque la masse est la plus grande (tous les réservoirs sont pleins) et que <math>g</math> est le plus élevé. L'accélération est maximale juste avant de manquer de carburant car la masse est alors minimale. De plus, le gain d'altitude a fait chuter la valeur de <math>g</math>.
 +
 
 +
Cette formule est valable uniquement quand le véhicule spatial est soumis à la pesanteur. En orbite, quand le vaisseau est en état d'impesanteur, un ratio poussée-poids inférieur à 1 ne posera pas de problème pour manœuvrer.  
 +
 
  
To lift off the rocket's thrust need to exceed the gravitational force. The formula for this is simply the thrust of all of your current stage engines divided by the weight of your ship, fully fuelled.
+
Une façon commode d'évaluer la force qui s'exerce sur le vaisseau (et les Kerbonautes) est d'exprimer l'accélération du vaisseau en <math>g</math> (g-force en Anglais). Pour se faire, il suffit de diviser l'accélération par <math>g_0=9,81m/s^2</math>. Lors d'un vol spatial réel, une force de 2 à 3 <math>g</math> s'applique couramment (lors du decollage et de la rentrée atmosphérique, les spationautes pèrent alors 2 à 3 fois leur poids). Un force de 5 <math>g</math> devient assez pénible à endurer. Un humain perd facilement connaissance s'il atteint une accélération d'un dizaine de <math>g</math>.
:<math>F_T > F_G = m \cdot g \implies TWR = \frac{F_T}{F_G} = \frac{F_T}{m \cdot g} > 1</math>
 
To calculate the acceleration simply use [[w:Newton's second law|Newton's second law]]:
 
:<math>F = m \cdot a = F_T - F_G = F_T - m \cdot g = m \cdot a \implies a = \frac{F_T}{m} - g</math>
 
These calculations only work when counteracting gravity. While coasting on an orbit the gravitational acceleration isn't important and thus the TWR may be below one and still work. The acceleration is at minimum directly after launch when the craft is heavy and at maximum immediately before running out of fuel, when the tanks are dry:
 
:<math>a_{min} \approx \frac{F_T}{m_{total}} - g</math> and <math> a_{max} \approx \frac{F_T}{m_{dry}} - g</math>
 
The dry mass also includes the fully fuelled upper stages of the craft. To determine the g-force simply divide achieved acceleration by <math>g_0 = 9.81 \frac{m}{s^2}</math>. As the craft is in free fall, the gravitational acceleration isn't felt by the crew so the accelerations appear to be higher for the crew leading to cancelling out the factor g:
 
:<math>\text{g-force}_{min} \approx \frac{F_T}{m_{total} \cdot g_0}</math> and <math>\text{g-force}_{max} \approx \frac{F_T}{m_{dry} \cdot g_0}</math>
 
  
As the weight of the ship depends on the current gravitation (<math>g</math>) the TWR differs between the celestial bodies.
+
 
 +
Notons une fois de plus que le poids depends de la valeur de <math>g</math>. La valeur du ratio poussée-poids dépend donc du corps orbité et de l'altitude.
  
 
== Conclusion ==
 
== Conclusion ==
This guide will hopefully have helped with designing your rockets to allow you to get the job done—whatever it may be—with no test flights first. We hope this guide has been helpful to new and continuing KSP pilots alike.
 
  
[[Category:Tutorials|Tutorial:Advanced Rocket Design]]
+
Ce tutoriel devrait normalement vous permettre d'accomplir votre mission - quelle qu'elle soit - sans procéder à un grand nombre de tests en vol préalables. Nous espérons que ce guide sera utile aux nouveaux pilotes KSP aussi qu'aux pilotes confirmés.
 +
 
 +
== Crédits ==
 +
Page originale par ''Vincent McConnell'' et ''Kosmo-not'', traduite et completée par ''Mixoupe''.
 +
 
 +
 
 +
[[Category:Tutorials/fr|Advanced Rocket Design]]

Latest revision as of 19:07, 2 May 2019

Concevoir des fusées dans un jeu comme Kerbal Space Program peut nécessiter une certaine connaissance de la mécanique spatiale et orbitale. Dans ce tutoriel, nous aborderons des sujets comme le calcul des delta-v, des manœuvres de transfert, du ratio poussée-poids, des forces qui s'exercent sur le vaisseau pendant une poussée et bien plus encore...

Delta-v

Le delta-v (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v , variation de vitesse) est le B A BA de la mécanique spatiale. C'est sûrement la chose la plus importante à connaître de votre fusée car c'est ce qui définit ce qu'elle est capable de réaliser. De ce que nous allons expliquer dans ce tutoriel de base, le Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v est probablement l'aspect le plus utile que vous aurez a appliquer dans Kerbal Space Program.

Pour calculer le Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v de chaque étage de votre véhicule spatial, il faut commencer par additionner les masses de tous les composants de l'étage.

  • Masse totale : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m_\text{totale}}
  • Masse de carburant (fuel) : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): m_{{\text{fuel}}}
  • Masse sèche : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m_\text{sèche} = m_\text{totale} - m_\text{fuel}}

L'équation du Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v ne nécessite que les masses totale et sèche, mais comme il est plus simple d'obtenir la masse de carburant, on calcule la masse sèche en effectuant une soustraction. Bien sûr d'autre combinaisons sont possibles.


La prochaine phase de calcul est de connaître l'impulsion spécifique (specific impulse) de votre moteur. L'impulsion spécifique caractérise "l'efficacité" d'un moteur en terme de consommation de carburant. Elle se mesure en secondes (s). Plus l'impulsion spécifique d'un moteur est grande, plus il est efficace. Par exemple, le LV-T30 a une impulsion spécifique de 370 s (dans le vide). Nous pouvons maintenant appliquer l'équation de Tsiolkovski, une formule capitale en mécanique spatiale :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Delta v = g\cdot I_{sp}\cdot \ln\left(\frac{m_\text{totale}}{m_\text{sèche}}\right)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): g est l'accélération de la pesanteur (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 9,81m/s^2} au niveau du sol), Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): I_{{sp}} est l'impulsion spécifique en secondes et Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ln} est le logarithme népérien.

Vous pouvez y aller : faites la somme de la masse de carburant de votre étage, puis calculez la masse totale de l'étage et soustrayez-y la masse de carburant (ce qui vous donne la masse sèche). Injectez ces valeurs dans l'équation à la place de Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): m_{{\text{total}}} et Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): m_{{\text{dry}}} . Voici un petit exemple en prenant l'accélération de la pesanteur terrestre (la même que sur Kerbin), soit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g=9,81m/s^2} .


Fusée de l'exemple
3e étage (Injection trans-munaire, Mun lander, retour)
Masse totale Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 3,72t}
Masse sèche Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1,72t}
Isp: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): 400s
Δv: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 3027,0 \frac ms}
2e étage (Injection en orbite de Kerbin)
Masse totale Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 7,27t}
Masse sèche Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 5,27t}
Isp: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): 370s
Δv: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1167,8 \frac ms}
1er étage (Ascension):
Masse totale Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 38,52t}
Masse sèche Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 14,52t}
Isp: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): 350s (estimée car vol atmosphérique)
Δv: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 3349,9 \frac ms}
Total
Δv: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 7544,6 \frac ms}

Moteurs multiples

Pour calculer l'impulsion spécifique moyenne de plusieurs moteurs dont la valeur de l'impulsion varie, vous devez connaitre la poussée (thrust) totale et le débit massique (mass flow, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\dot m} ) :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I_{sp_{moy}} = \frac{\sum\limits_i^n(thrust_i)}{\sum\limits_i^n(\dot m_i\cdot g_0)} = \frac{\sum\limits_i^n(thrust_i)}{\sum\limits_i^n\left(\frac{thrust_i}{I_{sp_i}}\right)} = \frac {thrust_1 + thrust_2 + \dots + thrust_n}{thrust_1\div I_{sp_1} + thrust_2\div I_{sp_2} + \dots + thrust_n\div I_{sp_n}}}

Vous obtiendrez ainsi l'impulsion spécifique correcte à utiliser pour calculer votre Δv. Si tous les moteurs sont les mêmes, ils agissement comme un seul moteur et l'utilisation de cette formule n'est pas nécessaire.

Calcul des manœuvres de transfert

Nous allons maintenant parler des manœuvres de transfert. C'est ce qu'on appelle effectuer un transfert suivant une orbite de Hohmann, ce qui nécessite d'allumer le moteur aux deux points opposés de l'orbite. On augmente la vitesse au périastre, ce qui va augmenter l'altitude de votre apoastre. On attend ensuite simplement d'atteindre ce nouvel apoastre, puis on allume à nouveau le moteur pour faire monter le périastre et circulariser l'orbite. De même, on peut aussi faire baisser notre orbite en allumant le moteur dans la direction rétrograde, ce qui diminuera notre vitesse orbitale.

On peut appliquer une formule pour connaître combien de Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v va nous coûter une telle manœuvre. Nous considérerons les phases de poussées comme impulsionnelles, car leur durée est tellement courte par rapport à la période de l'orbite qu'on peut les considérer comme de durée nulle.

Formule pour la première poussée :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Delta v_1=\sqrt{\frac\mu{r_1+R}}\Bigg(\sqrt{\frac{2(r_2+R)}{r_1+R+r_2+R}}-1\Bigg)}

Formule pour la seconde poussée :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Delta v_2=\sqrt{\frac\mu{r_2+R}}\Bigg(1-\sqrt{\frac{2(r_1+R)}{r_1+R+r_2+R}}\Bigg)}

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mu=G \cdot M_{C}} est un paramètre gravitationnel du corps orbité (3530,461 km³/s² pour Kerbin).
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle G} est la constante gravitationnelle (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 6,673 \times 10^{-11} \ \mbox{m}^3 \ \mbox{kg}^{-1} \ \mbox{s}^{-2}} ).
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M_{C}} est la masse du corps orbité.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): r_{1} est l'altitude de l'orbite initiale.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): r_{2} l'altitude de l'orbite finale.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): R est le rayon du corps orbité (600 km pour Kerbin).

Attention de bien toujours utiliser les mêmes unités dans une formule. Ne mélangez pas les mètres et les kilomètres, sinon vous trouverez des valeurs complètement fausses. Assurez-vous que votre étage dispose du Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v nécessaire pour effectuer la manœuvre. Vous pouvez calculer le Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v disponible en utilisant la formule exposée plus haut.

Si on prend l'exemple d'une orbite de transfert autour de Kerbin, avec Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle r_1=100km} et Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle r_2=200km} , on obtient Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Delta v_1=73,65m/s} et Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Delta v_2=71,23m/s} , soit un Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v total de Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 144,88m/s} .

Calcul du débit de carburant

Le débit de carburant (fuel flow) représente la quantité de carburant (en masse) brûlée par unité de temps.

Connaissant le Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v requis pour une poussée et la masse totale du vaisseau avant cette poussée, on peut calculer la masse de carburant nécessaire pour cette poussée.

Calculons d'abord la masse totale du vaisseau une fois la poussée terminée. Pour ce faire, utilisons la forme plus générale de l'équation de Tsiolkovski :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Delta v = g\cdot I_{sp}\cdot \ln\left(\frac{m_\text{initiale}}{m_\text{finale}}\right)}

En effet, pour un Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v fixé, la masse initiale vaut bien sûr la masse totale (avant la poussée). Comme au début de cet article, l'équation calculait le Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v produit si on consommait tout la carburant disponible, la masse finale était appelée "masse sèche" (fusée sans carburant).

Modifions cette dernière équation pour calculer la masse finale :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m_\text{finale}=\frac{m_\text{initiale}}{e^\frac{\Delta v}{g \cdot I_{sp}}}}

En soustrayant la masse finale à la masse initiale, on obtient directement la masse de carburant nécessaire à la poussée.

Attention que la valeur de Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): g (accélération de la pesanteur) n'est pas la même partout mais varie avec l'altitude (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle h} ) selon la formule

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g(h)=\frac{\mu}{(R+h)^2}}

Mais revenons à nos moutons. Nous voulons maintenant savoir quelle sera la durée de la poussée. Pour cela il faut d'abord calculer le débit massique de carburant (mass flow, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\dot m} , en Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle kg/s} ) des moteurs :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \dot m = \frac{F}{g \cdot I_{sp}}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F} est la force de poussée des moteurs (en newtons) et Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): g varie toujours en fonction de l'altitude.

On trouve ensuite la durée (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta t ) de la poussée en effectuant


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Delta t=\frac{(m_\text{initiale}-m_\text{finale})}{\dot m}}

Notons enfin que les quantités de carburant sont indiquées en litres dans KSB. On peut passer des Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle kg} en Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle l} en utilisant la masse volumique du mélange carburant/comburant (liquid fuel/oxidize) qui vaut environ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 5000kg/m^3}

Vitesse orbitale

Calculer sa vitesse orbitale est assez facile dans le cas d'une orbite circulaire, car alors cette vitesse est constante tout le long de l'orbite. Cette vitesse vaut

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle v=\sqrt{\frac\mu r}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle r=R+h} avec Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle h} , l'altitude de l'orbite.

Encore une fois, attention aux unités. Si vous utilisez les unités standards pour Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \mu (des Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m^3/s^2} ) ne mettez pas Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): r en Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle km} , mais bien en Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): m , sinon vous obtiendrez une réponse complètement fausse. Vous pouvez transformer toutes vos valeurs en utilisant des kilomètres et, par exemple, des heures, et vous obtiendrez une valeur de Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): v en Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle km/h} au lieu de Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m/s} . Une façon simple de savoir si tout est correct est de vérifier si vos résultats ont un sens. La vitesse orbitale autour de Kerbin (LKO) est d'environ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2 km/s} . Si vous trouvez Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2000km/s} ou Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2m/s} , il y a un problème quelque part...

Bilan de delta-v

Un bilan de delta-v consiste à prévoir en gros combien de Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v sera nécessaire pour se rendre d'un endroit (que ce soit au sol ou en orbite) à un autre. Le Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v total étant bien sûr la somme des Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v des différentes phases du vol, avec à chaque fois une marge d'erreur (du Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v en plus) en cas de fausse manœuvre ou d'imprévu. voici un exemple de bilan de delta-v :

Du pas de tir à une orbite de 100 km 4700 m/s
Injection trans-munaire 900 m/s
Amunissage 1000m/s
Décollage et retour vers Kerbin 1000 m/s
Total Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v 7600 m/s

Si nous concevons notre fusée pour avoir un Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v total de 7 600 m/s et que l'accélération de notre premier étage est adéquate, nous pouvons être sûrs que notre fusée pourra se poser sur la Mun et revenir sur Kerbin. Si votre fusée compte un peu moins de Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): \Delta v , elle pourra peut-être accomplir cette mission, mais la moindre erreur de pilotage peut vous faire tomber à court de carburant avant l'atterrissage.

Calcul de l'accélération

→ See also: Thrust-to-weight ratio

Nous allons parler du ratio poussée-poids (thrust-to-weight ratio ou TWR). Le calculer est assez simple et il est capital de le connaître pour savoir si votre fusée sera capable de quitter le pas de tir ou non. Si votre ratio poussée-poids est inférieur à 1, vous ne bougerez pas d'un millimètre. Le ratio poussée-poids minimum pour un départ correct se situe autour de 2,2.

La portance créée par la poussée des moteurs doit dépasser la force de gravité en surface si vous voulez décoller. La formule pour calculer le ratio est simplement la somme de la poussée des moteurs de votre premier étage (ceux qui sont actifs) divisée par le poids de votre fusée, carburant compris.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F > P = m \cdot g \implies TWR = \frac{F}{P} = \frac{F}{m \cdot g} > 1}

Pour calculer l'accélération, utilisez simplement la seconde loi de Newton :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum \vec F = m \cdot \vec a = F - P = F - m \cdot g = m \cdot a \implies a = \frac{F}{m} - g}

L'accélération est minimale au moment du départ puisque la masse est la plus grande (tous les réservoirs sont pleins) et que Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): g est le plus élevé. L'accélération est maximale juste avant de manquer de carburant car la masse est alors minimale. De plus, le gain d'altitude a fait chuter la valeur de Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): g .

Cette formule est valable uniquement quand le véhicule spatial est soumis à la pesanteur. En orbite, quand le vaisseau est en état d'impesanteur, un ratio poussée-poids inférieur à 1 ne posera pas de problème pour manœuvrer.


Une façon commode d'évaluer la force qui s'exerce sur le vaisseau (et les Kerbonautes) est d'exprimer l'accélération du vaisseau en Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): g (g-force en Anglais). Pour se faire, il suffit de diviser l'accélération par Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g_0=9,81m/s^2} . Lors d'un vol spatial réel, une force de 2 à 3 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): g s'applique couramment (lors du decollage et de la rentrée atmosphérique, les spationautes pèrent alors 2 à 3 fois leur poids). Un force de 5 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): g devient assez pénible à endurer. Un humain perd facilement connaissance s'il atteint une accélération d'un dizaine de Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): g .


Notons une fois de plus que le poids depends de la valeur de Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): g . La valeur du ratio poussée-poids dépend donc du corps orbité et de l'altitude.

Conclusion

Ce tutoriel devrait normalement vous permettre d'accomplir votre mission - quelle qu'elle soit - sans procéder à un grand nombre de tests en vol préalables. Nous espérons que ce guide sera utile aux nouveaux pilotes KSP aussi qu'aux pilotes confirmés.

Crédits

Page originale par Vincent McConnell et Kosmo-not, traduite et completée par Mixoupe.