Difference between revisions of "Tutorial:Whats with all the math?/ja"

From Kerbal Space Program Wiki
Jump to: navigation, search
(Eccentricity)
(固体燃料ブースターってどうなの?)
 
(10 intermediate revisions by the same user not shown)
Line 29: Line 29:
 
[[w:ja:軌道離心率|離心率]]は軌道の形状を表す数値です。離心率は数値が0に近いほど真円の軌道を表し、楕円軌道は0~1の間の数値になります。右の画像では円軌道が0、楕円軌道がだいたい1/2の離心率を持っています。1以上の離心率は放物線または双曲線を表します。つまり周回軌道にはならず天体の重力圏を脱出してしまい、戻ってくることはありません。
 
[[w:ja:軌道離心率|離心率]]は軌道の形状を表す数値です。離心率は数値が0に近いほど真円の軌道を表し、楕円軌道は0~1の間の数値になります。右の画像では円軌道が0、楕円軌道がだいたい1/2の離心率を持っています。1以上の離心率は放物線または双曲線を表します。つまり周回軌道にはならず天体の重力圏を脱出してしまい、戻ってくることはありません。
  
===Maneuvers===
+
===宇宙機動===
 
{{See also|Basic maneuvers}}
 
{{See also|Basic maneuvers}}
Say we are at point A in the figure to the right, and we point the nose of our rocket in the direction of the arrow ([[prograde]], the direction we are moving) and burn our engines for a while. In reality, this burn takes a certain amount of time, and our position changes during that time. However, that is some much more complicated math, so we are going to pretend that the burn starts and ends instantly. Basically, we pretend that we '''accelerate''' by a certain amount at point A. Since we are still at point A, when we complete one orbital period, we will be back at point A. However, the opposite side of our orbit will move away from us, making our orbit more eccentric in this case. The important take-away here is that we '''accelerate''' at point A to change our '''velocity'''. This changes the shape of our orbit. Say our original velocity was 10,000 m/s (10 kilometers per second), and our new speed is 10,200 m/s. Our velocity changed by 200 m/s, and this is our Δv!
+
図のA地点で矢印の方向([[prograde|順行]]、進行方向)へ機首を向けて一定時間エンジンを燃焼させるとします。実際には、燃焼時間の間にも機体は移動してA地点からずれていきますが、計算が複雑になるので燃焼は一瞬で終了するものとします。ではA地点で一定量'''加速'''します。加速は一瞬で機体はまだA地点にいるので、軌道を一周してまたA地点まで戻りましょう。しかし軌道の反対側は遠ざかっており、離心率も高くなっています。ここで重要なのはA地点で'''加速'''して'''速度'''が変化したことです。これにより軌道の形が変わりました。元の速度を10,000 m/s(10 km/s)、加速後を10,200 m/sとしましょう。速度変化は200 m/sで、これを'''Δv'''(デルタブイ)と言います!
  
=What does all this mean?=
+
=それがどうした?=
Okay, by now if you are still reading, you are probably starting to think "How does all this stuff help me go to space!?" Well, we are going to start talking about that right now!
+
ここまで読んだところで、あなたは「これが宇宙へ行く事にどう役立つのさ!?」とお思いでしょう。ここからは正にそれを説明していきます!
  
==Why is Δv so important?==
+
==なぜΔvが大事なの?==
At this point, we have a rough idea of what Δv is, and Δv is probably the most important thing to understand. Note that above, when we talked about how fast our rocket was moving, or how it's orbit changed, we said nothing about the mass of the rocket. We don't know if we are talking about a tiny satellite, a spaceplane, or a huge rocket, but we know that how our orbit changes is only dependent on how our velocity changes! This is why we talk about Δv so much, because no matter what rocket you build, it takes the same amount of Δv to go from point A to point B in space. Furthermore, we know it takes about 4600 Δv to get into orbit around Kerbin, so if we know the Δv our ascent stage generates, we know if it will get us to space!
+
At this point, we have a rough idea of what Δv is, and Δv is probably the most important thing to understand. ここまでロケットの速さや軌道について話して来ましたが、ロケットの質量について一切触れてこなかったことに注目してください。あなたは小さな衛星かスペースプレーンか巨大ロケットかわからなくとも、速度に依存して軌道が変化することを知っているのです! それがΔvが重要な理由で、どんな設計のロケットであろうと宇宙空間の2地点の移動に必要なΔvは同じなのです。さらにKerbin周回軌道に到達するには約4600 Δvが必要で、上昇用ステージにそれだけのΔvを発生させるだけのがあれば宇宙へ到達することができるのです!
  
==Determining Δv==
+
==Δvの決定==
Since this is an article for people without mathematical backgrounds, we are not going to look at the formula for calculating Δv. There are great [[Tutorial:Advanced_Rocket_Design|tutorials]] explaining the [[Tutorial:_Basic_Orbiting_(Math)|equations]] for all of this, and readers are encouraged to consult them for a more rigorous understanding. However, most people see big, complicated equations and they stop reading, whether it comes from some post-traumatic stress left over from school, or being generally uninterested in mathematics, and that is okay. Here, we are going to simply look at what Δv depends on, that is, what effect does building a rocket in one way or another impact Δv?
+
本チュートリアルは数学知識の無い人に向けたものなのでΔvの算出方法には触れません。より深い理解を求めたい人は[[Tutorial:Advanced_Rocket_Design|tutorials]][[Tutorial:_Basic_Orbiting_(Math)|equations]]を参照してください。おそらくリンクを参照して長く複雑な式を見たところで、多くの人は興味が失せたり学生時代の数学トラウマが再発したりして、途中で読むのをやめるでしょうが問題ありません。ここでは単純にΔvが何に依存しているか、that is, what effect does building a rocket in one way or another impact Δv?
  
There are mods that will tell you what your stage's Δv is, and I personally use one of them, but since this article is about vanilla KSP we will leave them out of this discussion. There are also mods that will do your entire take-off, gravity turn, and all your orbital maneuvers for you. While these can be fun, I personally do not believe in using them outside of sandbox mode for experimental purposes, since the point of playing the game is learning for me.
+
各ステージのΔvを表示するMODがいくつかあり筆者も利用していますが、本チュートリアルはバニラ(無改造)のKSPを対象としているためここでは触れません。There are also mods that will do your entire take-off, gravity turn, and all your orbital maneuvers for you. While these can be fun, I personally do not believe in using them outside of sandbox mode for experimental purposes, since the point of playing the game is learning for me.
  
===Thrust and Thrust-to-Weight Ratio(TWR)===
+
===推力と推力重量比(TWR)===
 
{{See also|Thrust-to-weight ratio}}
 
{{See also|Thrust-to-weight ratio}}
Thrust is the amount of force (how much 'push') your engine is generating. Remember the example of the car going down the road where the engine pushes the car forward and friction pushes the car backwards? The same thing happens with rockets. Thrust is basically how hard the rocket is being pushed up from the surface of [[Kerbin]].
+
推力(Thrust)とはエンジンが機体を押す力の大きさのことです。車のアクセルで前進、摩擦で後退の力が働くと言う例え話は覚えていますか? ロケットでも同じことが起こります。推力は基本的に[[Kerbin/ja|Kerbin]]地表からの上昇しやすさと言ってよいでしょう。
  
We all know that heavy things are harder to pick up than lighter things. If you don't believe me, go lift a piece of paper off the ground over your head, and then do the same with a piece of furniture, like a couch. The couch is much harder to pick up. The same thing is true in rocket science, heavier rockets are harder to pick up (lift off) than lighter rockets! This is why TWR is so important, the rocket's engines are pushing the rocket up, and gravity is pushing the rocket back down. If you have ever arm-wrestled, you know that the person who pushes harder is going to win. The rocket's weight is how hard gravity is pushing down. Therefore, the rocket's thrust must push harder than gravity, or you are not going to space. A TWR less than one means that gravity is going to win. A TWR over one means the rocket is going to win, and a TWR of exactly one means the rocket will not hover in place. However, once you are in a stable obit, you no longer need a TWR over one to change your velocity.
+
重い物を持ち上げるのは軽い物より大変なのはあなたも知っているでしょう。もし信じられないと言うなら、紙1枚を床から頭の上に持ち上げた後、ソファなど重たい家具で同じことをしてください。ソファの方が大変ですよ。同じことがロケット科学の世界でも言え、重いロケットの方が軽いロケットより上昇するのが困難です! これが推力重量比の重要性を表しており、エンジンが機体を持ち上げようとすると重力が機体を押し下げようとします。腕相撲では押す力が強いほうが勝つことは知っているでしょう。ロケットの重さは重力となってロケットを押し下げます。そのためロケットの推力は重力よりも強い力で押し上げなければ宇宙へは辿り着けません。推力重量比が1未満の場合は重力が勝つことを意味します。推力重量比が1より大きければロケットの推力が勝ち、一定の位置で浮遊し続けることはありません。しかし一度安定した軌道に到達していれば、1未満の推力重量比でも速度調整を行うことができます。
  
====Side-note for interested and advanced readers====
+
====発展(高度な読者向け)====
TWR changes during the flight of a rocket. As you burn more fuel, you lose mass, and your TWR increases since your weight decreases. TWR also depends on what planet/moon you are on since each celestial body has different gravity. Therefore, the same rocket with the same amount of fuel as a lower TWR on Eve than it does on Kerbin.
+
推力重量比は飛行中に刻々と変化します。燃料を消費すれば機体は軽くなり、重量が減ることで推力重量比は向上します。また推力重量比は天体の重力によっても変化します。そのため同じロケットでも重力の強いEveではKerbinより推力重量比が悪化します。
  
===So, what engine should my rocket use, and what is engine ISP?===
+
===で、どのエンジンを使うべきなの? 比推力(ISP)って何?===
 
{{See also|Specific impulse}}
 
{{See also|Specific impulse}}
Let's start with engine ISP. Basically, it tells you how fuel-efficient your engine is. An engine with a higher ISP will give you more Δv for the same amount of fuel as an engine with lower ISP. However, you also need to look at how much thrust they generate, and determine if you need a lot of Δv in a small amount of time, or less Δv all at once.
+
それでは比推力の説明に移りましょう。基本的に燃費の良さを表していると言っておきましょう。比推力の高いエンジンは同じ燃料量でも比推力の低いエンジンより多くのΔvを得ることができます。しかし同時に推力も確認してください。時間がかかっても多くのΔvが必要なのか、Δvが少なくとも瞬間的な推力が必要なのか判断する必要があります。
  
====Example====
+
========
The [[LV-909 Liquid Fuel Engine]] engine has ISP of 300 in atmosphere or 390 in space. The [[Rockomax "Mainsail" Liquid Engine]] has ISP of 320 in atmosphere or 360 in space. This doesn't seem like much of a difference. However, the mainsail can generate a thrust of 1500, while the LV-909 can only generate a thrust of 50. Therefore, the LV-909 will accelerate your rocket more slowly. Sometimes, you need to generate a lot of thrust very quickly (like when you are trying to go from the ground to orbit), so an engine with lower ISP but higher thrust may be better
+
[[LV-909 Liquid Fuel Engine/ja|LV-909エンジン]]の比推力は1気圧で300、真空中で390です。[[Rockomax "Mainsail" Liquid Engine/ja|"Mainsail"エンジン]]の比推力は1気圧で320、真空中で360です。これは些細な差に思われるかもしれません。しかし、Mainsailの推力は1500、LV-909の推力は50です。そのためLV-909の加速は非常に緩やかなものとなります。地表から軌道に上がる場合などでは比推力よりも十分な推力の方が重要になります。
  
==What about SRBs?==
+
==固体燃料ブースターってどうなの?==
 
{{See also|SRB}}
 
{{See also|SRB}}
My first ship to successfully orbit [[Minmus]] had around 50 SRB's on it. I do not recommend this approach. First off, as of .24, we have to pay for parts, so efficiency is important. Second, it was very difficult to get enough struts on the ship to get it to stay in one piece. Third, it was very difficult to steer, so my [[gravity turn]] was very inefficient.  I only mention this because a common part of the learning curve for new players is to add more SRB's and more [[strut]]s when we have trouble reaching orbit.
+
筆者が初めて[[Minmus/ja|Minmus]]周回軌道に到達した時のロケットは50基の固体燃料ブースターを使っていました。しかしこの手法はお勧めできません。まず第1にversion0.24からパーツにコストが掛かるようになったので効率は重要です。第2に十分な着陸脚を設置するのが非常に困難です。第3に操縦が非常に難しく[[gravity turn/ja|重力ターン]]も非常に非効率的なものになってしまいました。I only mention this because a common part of the learning curve for new players is to add more SRB's and more [[strut]]s when we have trouble reaching orbit.
  
SRB's add a good amount of thrust, but also add weight. Therefore, the more you add, the less of a benefit you are getting. Also, since they only have one setting, which is to burn until empty, they are best used for ascent stages only, since we need more control when we are in space. Therefore, my recommendation is that if you are having trouble getting into orbit, putting a few SRB's on the side of your rocket as a first stage may help. As you unlock more parts in career mode, and get a better feel for getting into orbit, you may or may not continue to use them.
+
固体燃料ブースターにより推力を追加できますが同時に重量も増加します。そのため、追加するほどその価値は目減りします。また固体燃料ブースターは点火するしか操作が無く、一度点火すると燃料が空になるまで燃焼し続けます。そのため離陸ステージとしては最適ですが宇宙空間ではより細かい制御ができる必要があります。したがってロケットが軌道投入できない場合に側面にいくつか固体燃料ブースターを付け加えるのが正しい使い方でしょう。[[career/ja|Careerモード]]でより良いエンジンが開発されている場合は無理に使用し続ける必要は無いでしょう。
  
==Final Notes==
+
==最後に==
Hopefully this tutorial has given you a decent primer on what all the math really means. I highly recommend experimenting with different rocket designs, reading more rigorous mathematical explanations, and continuing to learn, since this is just a baseline to get you started.
+
本チュートリアルでそれぞれの数値が何を意味しているのかを入門として正しく伝えられたことを願っています。また同時に様々なロケットを設計し、より厳密な数学的理解を継続的に深めていくことを筆者はお勧めします。これはあくまでゲームを始めるためのスタートラインに過ぎません。
  
 
[[Category :Tutorial/ja]]
 
[[Category :Tutorial/ja]]

Latest revision as of 15:45, 25 October 2014

This page needs more links to other articles to help integrate it into the Kerbal Space Program Wiki

門外漢のためのKSP数学

筆者がKSPを始めたのは数ヶ月前。他のプレイヤー達が口にするTWR、ISP、Δv、Ap、離心率などなど数学や物理の専門用語を私は全て理解しようと努力しました。本チュートリアルではこれらの数値が何を意味しているか、なぜ重要なのかを履修経験の無い人向けに短時間で理解できるよう説明していきます。

物理について一言

軌道力学の大部分は直感的にイメージすることが出来ます。プレイヤーの中に宇宙へ行ったことがある人は恐らくいないので、物体がどう動くかのイメージは過去の経験に基づくことになります。歴史的にも物理学では経験によるイメージが大きな争点になってきました。because we had to think in ways that were different from our intuition to really understand how planets moved. 多くのチュートリアルではニュートンの功績を研究することを奨励していますが、本チュートリアルでは基本的な概念のみ解説していきます。本チュートリアルでは厳密な正確さではなく直感的なわかりやすさを念頭に置いていることを理解して置いてください。

速度・速さ・摩擦・加速

まず車を時速70マイル(約113km/h)で運転しているとしましょう。ギアをニュートラルにしたら車は減速してやがて止まるでしょう。速度を維持するためにアクセルを吹かし続けないといけないことを私たちは直感的にイメージできます。これは摩擦が働くとわかっているからです。車の例では地面との摩擦や空気抵抗が働きます。アクセルが前進させる力だとしたら摩擦は後退させる力と考えることが出来ます。ニュートラルでは摩擦の後退させる力のみが残り、車はいずれ停止します。

宇宙空間では摩擦を発生させる地面も空気もありません。そのため後退させる力も働きません。星が一切無い仮想の宇宙空間では車は永遠にどこまでも直進し続けるでしょう。これは力が加わらない限り静止している物は静止し続け、運動しているものは同じ運動を続ける、というニュートンの法則のひとつから来ています。地球上では摩擦の後退させる力とアクセルの前進させる力が働いています。

「速度」は、「速さ」と移動方向の両方をまとめて指しています。そのため同じ「速さ」で旋回していても「速度」は変化しているということになります。Think about making a 90-degree turn in a car, you have to push the gas pedal down during the turn. 加速は速度の変化を指しているだけです。そのため物理学で「加速している」といえば、速さが変化しているか、移動方向が変化しているか、その両方を指しています。 Note for the interested readers: There is an important mathematical relationship between position, velocity, and acceleration. In fact, the exploration of this relationship by Isaac Newton and Gottfried Leibniz lead to the invention of what we math people now call Calculus.

軌道力学

→ 参照: Orbit

Kerbal Space Programをプレイするとなると、かなりの時間を軌道に費やすことになるでしょう。軌道上での動きを理解できるように、「思考実験」をしておきましょう。屋外で実演しても構いません。ひもが付いたボールを想像して下さい。ひもを持ちグルグルと素早く振り回したとします。するとボールはあなたの周りに「軌道」を描きます。KSPの場合は、ひもの代わりに重力が宇宙船を天体に引き寄せようとします。

完全な円の軌道にいる宇宙船に視点を移すと、宇宙船の速さは変わらずずっと一定です。(進行方向が変わり続けているため速度は変化しています。)天体は真下に引き寄せ続けていますが、宇宙船も十分な速さで直進しようとするため円を描いて飛行します。実際には宇宙船も落下し続けていますが、それと同じだけ遠ざかり続けているのです。Readers are encouraged to convince themselves of this, it is easier to see in a highly eccentric orbit than in a circular orbit, more on that later. In KSP, as long as you are in a well behaved orbit (not on an escape trajectory, not going to crash into the surface, completely above the atmosphere), your orbit will never change. You will keep moving in the same path forever. In the real world, it's not quite that simple, but that is outside the scope of this explanation.

軌道速度

Error creating thumbnail: /bin/bash: rsvg-convert: command not found

他の天体が影響しない安定した軌道では、宇宙船の速度(速さと移動方向)は軌道上の位置のみに依存します。これを理解することは驚くほど重要なことなので、いくつか説明を加えます。右の図の大きな楕円軌道を見てください。エンジンを使用しなければ、一周して同じ地点に来た時の速さは同じになります。

離心率

離心率は軌道の形状を表す数値です。離心率は数値が0に近いほど真円の軌道を表し、楕円軌道は0~1の間の数値になります。右の画像では円軌道が0、楕円軌道がだいたい1/2の離心率を持っています。1以上の離心率は放物線または双曲線を表します。つまり周回軌道にはならず天体の重力圏を脱出してしまい、戻ってくることはありません。

宇宙機動

→ 参照: Basic maneuvers

図のA地点で矢印の方向(順行、進行方向)へ機首を向けて一定時間エンジンを燃焼させるとします。実際には、燃焼時間の間にも機体は移動してA地点からずれていきますが、計算が複雑になるので燃焼は一瞬で終了するものとします。ではA地点で一定量加速します。加速は一瞬で機体はまだA地点にいるので、軌道を一周してまたA地点まで戻りましょう。しかし軌道の反対側は遠ざかっており、離心率も高くなっています。ここで重要なのはA地点で加速して速度が変化したことです。これにより軌道の形が変わりました。元の速度を10,000 m/s(10 km/s)、加速後を10,200 m/sとしましょう。速度変化は200 m/sで、これをΔv(デルタブイ)と言います!

それがどうした?

ここまで読んだところで、あなたは「これが宇宙へ行く事にどう役立つのさ!?」とお思いでしょう。ここからは正にそれを説明していきます!

なぜΔvが大事なの?

At this point, we have a rough idea of what Δv is, and Δv is probably the most important thing to understand. ここまでロケットの速さや軌道について話して来ましたが、ロケットの質量について一切触れてこなかったことに注目してください。あなたは小さな衛星かスペースプレーンか巨大ロケットかわからなくとも、速度に依存して軌道が変化することを知っているのです! それがΔvが重要な理由で、どんな設計のロケットであろうと宇宙空間の2地点の移動に必要なΔvは同じなのです。さらにKerbin周回軌道に到達するには約4600 Δvが必要で、上昇用ステージにそれだけのΔvを発生させるだけのがあれば宇宙へ到達することができるのです!

Δvの決定

本チュートリアルは数学知識の無い人に向けたものなのでΔvの算出方法には触れません。より深い理解を求めたい人はtutorialsequationsを参照してください。おそらくリンクを参照して長く複雑な式を見たところで、多くの人は興味が失せたり学生時代の数学トラウマが再発したりして、途中で読むのをやめるでしょうが問題ありません。ここでは単純にΔvが何に依存しているか、that is, what effect does building a rocket in one way or another impact Δv?

各ステージのΔvを表示するMODがいくつかあり筆者も利用していますが、本チュートリアルはバニラ(無改造)のKSPを対象としているためここでは触れません。There are also mods that will do your entire take-off, gravity turn, and all your orbital maneuvers for you. While these can be fun, I personally do not believe in using them outside of sandbox mode for experimental purposes, since the point of playing the game is learning for me.

推力と推力重量比(TWR)

→ 参照: Thrust-to-weight ratio

推力(Thrust)とはエンジンが機体を押す力の大きさのことです。車のアクセルで前進、摩擦で後退の力が働くと言う例え話は覚えていますか? ロケットでも同じことが起こります。推力は基本的にKerbin地表からの上昇しやすさと言ってよいでしょう。

重い物を持ち上げるのは軽い物より大変なのはあなたも知っているでしょう。もし信じられないと言うなら、紙1枚を床から頭の上に持ち上げた後、ソファなど重たい家具で同じことをしてください。ソファの方が大変ですよ。同じことがロケット科学の世界でも言え、重いロケットの方が軽いロケットより上昇するのが困難です! これが推力重量比の重要性を表しており、エンジンが機体を持ち上げようとすると重力が機体を押し下げようとします。腕相撲では押す力が強いほうが勝つことは知っているでしょう。ロケットの重さは重力となってロケットを押し下げます。そのためロケットの推力は重力よりも強い力で押し上げなければ宇宙へは辿り着けません。推力重量比が1未満の場合は重力が勝つことを意味します。推力重量比が1より大きければロケットの推力が勝ち、一定の位置で浮遊し続けることはありません。しかし一度安定した軌道に到達していれば、1未満の推力重量比でも速度調整を行うことができます。

発展(高度な読者向け)

推力重量比は飛行中に刻々と変化します。燃料を消費すれば機体は軽くなり、重量が減ることで推力重量比は向上します。また推力重量比は天体の重力によっても変化します。そのため同じロケットでも重力の強いEveではKerbinより推力重量比が悪化します。

で、どのエンジンを使うべきなの? 比推力(ISP)って何?

→ 参照: Specific impulse

それでは比推力の説明に移りましょう。基本的に燃費の良さを表していると言っておきましょう。比推力の高いエンジンは同じ燃料量でも比推力の低いエンジンより多くのΔvを得ることができます。しかし同時に推力も確認してください。時間がかかっても多くのΔvが必要なのか、Δvが少なくとも瞬間的な推力が必要なのか判断する必要があります。

LV-909エンジンの比推力は1気圧で300、真空中で390です。"Mainsail"エンジンの比推力は1気圧で320、真空中で360です。これは些細な差に思われるかもしれません。しかし、Mainsailの推力は1500、LV-909の推力は50です。そのためLV-909の加速は非常に緩やかなものとなります。地表から軌道に上がる場合などでは比推力よりも十分な推力の方が重要になります。

固体燃料ブースターってどうなの?

→ 参照: SRB

筆者が初めてMinmus周回軌道に到達した時のロケットは50基の固体燃料ブースターを使っていました。しかしこの手法はお勧めできません。まず第1にversion0.24からパーツにコストが掛かるようになったので効率は重要です。第2に十分な着陸脚を設置するのが非常に困難です。第3に操縦が非常に難しく重力ターンも非常に非効率的なものになってしまいました。I only mention this because a common part of the learning curve for new players is to add more SRB's and more struts when we have trouble reaching orbit.

固体燃料ブースターにより推力を追加できますが同時に重量も増加します。そのため、追加するほどその価値は目減りします。また固体燃料ブースターは点火するしか操作が無く、一度点火すると燃料が空になるまで燃焼し続けます。そのため離陸ステージとしては最適ですが宇宙空間ではより細かい制御ができる必要があります。したがってロケットが軌道投入できない場合に側面にいくつか固体燃料ブースターを付け加えるのが正しい使い方でしょう。Careerモードでより良いエンジンが開発されている場合は無理に使用し続ける必要は無いでしょう。

最後に

本チュートリアルでそれぞれの数値が何を意味しているのかを入門として正しく伝えられたことを願っています。また同時に様々なロケットを設計し、より厳密な数学的理解を継続的に深めていくことを筆者はお勧めします。これはあくまでゲームを始めるためのスタートラインに過ぎません。