Tutorial:Advanced Rocket Design/fr

From Kerbal Space Program Wiki
< Tutorial:Advanced Rocket Design
Revision as of 10:50, 23 April 2014 by Mixoupe (talk | contribs) (Delta-v map)
Jump to: navigation, search

Page originale par Vincent McConnell et Kosmo-not, traduite et completée par Mixoupe. Traduction non finie.

Introduction:

Apprendre à construire une fusée basique pour un jeu de simulation spatiale comme Kerbal Space Program peut être extrêmement important pour le succès de la construction de fusées souhaitées dans le cadre d'une mission précise. Dans ce guide, nous allons couvrir des sujets tels que calculer du Delta-V de notre vaisseau, expliquer comment réussir un transfert de manoeuvre, obtenir le rapport de poussée sur poids, calculer les poussées de force gravitation (G-force) durant une séquence d'accélération particulière, ou encore calculer le Delta-V nécessaire pour un transfert Hohmann complet et beaucoup plus encore.

Delta-V

Le (variation de vitesse) est le B A Ba de la mécanique spatiale. C'est sûrement la chose la plus importante à connaître de votre fusée car c'est ce qui définit ce que votre fusée est capable de réaliser. De ce que nous allons expliquer dans ce tutoriel de base, le est probablement l'aspect le plus utile que vous aurez a appliquer dans Kerbal Space Program.

Pour calculer le de chaque étage de votre véhicule spatial, il faut commencer par additionner les masses de tous les composants de l'étage.

  • Masse totale :
  • Masse de carburant (fuel) :
  • Masse sèche (dry) :

L'équation du ne nécessite que les masses totale et sèche, mais comme il est plus simple d'obtenir la masse de carburant, on calcule la masse sèche en effectuant une soustraction. Bien sûr d'autre combinaisons sont possibles.


La prochaine phase de calcul est de connaître l'impulsion spécifique (specific impulse) de votre moteur. L'impulsion spécifique caractérise "l'efficacité" d'un moteur en terme de consommation de carburant. Elle se mesure en secondes (s). Plus l'impulsion spécifique d'un moteur est grande, plus il est efficace. Par exemple, le LV-T30 a une impulsion spécifique de 370 s (dans le vide). Nous pouvons maintenant appliquer l'équation de Tsiolkovski, une formule capitale en mécanique spatiale :

est l'accélération de la pesanteur ( au niveau du sol), est l'impulsion spécifique en secondes et est le logarithme népérien.

Vous pouvez y aller : faites la somme de la masse de carburant de votre étage, puis calculez la masse totale de l'étage et soustrayez-y la masse de carburant (ce qui vous donne la masse sèche). Injectez ces valeurs dans l'équation à la place de et . Voici un petit exemple en prenant l'accélération de la pesanteur terrestre (la même que sur Kerbin), soit .


Exemple de fusée
3e étage (Injection trans-munaire, Mun lander, retour)
Masse totale
Masse sèche
Isp:
Δv:
2e étage (Injection en orbite de Kerbin)
Masse totale
Masse sèche
Isp:
Δv:
1er étage (Ascension):
Masse totale
Masse sèche
Isp: (estimée car vol atmosphérique)
Δv:
Total
Δv:

Moteurs multiples

Pour calculer l'impulsion spécifique moyenne de plusieurs moteurs dont la valeur de l'impulsion varie, vous devez connaitre la poussée (thrust) totale et le débit massique (mass flow, ) :

Vous obtiendrez ainsi l'impulsion spécifique correcte à utiliser pour calculer votre Δv. Si tous les moteurs sont les mêmes, ils agissement comme un seul moteur et l'utilisation de cette formule n'est pas nécessaire.

Calcul des manœuvres de transfert

Nous allons maintenant parler des manœuvres de transfert. C'est ce qu'on appelle effectuer un transfert suivant une orbite de Hohmann, ce qui nécessite d'allumer le moteur aux deux points opposés de l'orbite. On augmente la vitesse au périastre, ce qui va augmenter l'altitude de votre apoastre. On attend ensuite simplement d'atteindre ce nouvel apoastre, puis on allume à nouveau le moteur pour faire monter le périastre et circulariser l'orbite. De même, on peut aussi faire baisser notre orbite en allumant le moteur dans la direction rétrograde, ce qui diminuera notre vitesse orbitale.

On peut appliquer une formule pour connaître combien de va nous coûter une telle manœuvre. Nous considérerons les phases de poussées comme impulsionnelles, car leur durée est tellement courte par rapport à la période de l'orbite qu'on peut les considérer comme de durée nulle.

Formule pour la première poussée :

Formule pour la seconde poussée :

  • est un paramètre gravitationnel du corps orbité (3530,461 km³/s² pour Kerbin).
  • est la constante gravitationnelle ().
  • est la masse du corps orbité.
  • est l'altitude de l'orbite initiale.
  • l'altitude de l'orbite finale.
  • est le rayon du corps orbité (600 km pour Kerbin).

Attention de bien toujours utiliser les mêmes unités dans une formule. Ne mélangez pas les mètres et les kilomètres, sinon vous trouverez des valeurs complètement fausses. Assurez-vous que votre étage dispose du nécessaire pour effectuer la manœuvre. Vous pouvez calculer le disponible en utilisant la formule exposée plus haut.

Si on prend l'exemple d'une orbite de transfert autour de Kerbin, avec et , on obtient et , soit un total de .

Calcul du débit de carburant

Le débit de carburant (fuel flow) représente la quantité de carburant (en masse) brûlée par unité de temps.

Connaissant le requis pour une poussée et la masse totale du vaisseau avant cette poussée, on peut calculer la masse de carburant nécessaire pour cette poussée.

Calculons d'abord la masse totale du vaisseau une fois la poussée terminée. Pour ce faire, utilisons la forme plus générale de l'équation de Tsiolkovski :

En effet, pour un fixé, la masse initiale vaut bien sûr la masse totale (avant la poussée). Comme au début de cet article, l'équation calculait le produit si on consommait tout la carburant disponible, la masse finale était appelée "masse sèche" (fusée sans carburant).

Modifions cette dernière équation pour calculer la masse finale :

En soustrayant la masse finale à la masse initiale, on obtient directement la masse de carburant nécessaire à la poussée.

Attention que la valeur de (accélération de la pesanteur) n'est pas la même partout mais varie avec l'altitude () selon la formule

Mais revenons à nos moutons. Nous voulons maintenant savoir quelle sera la durée de la poussée. Pour cela il faut d'abord calculer le débit massique de carburant (mass flow, , en ) des moteurs :

est la force de poussée des moteurs (en newtons) et varie toujours en fonction de l'altitude.

On trouve ensuite la durée () de la poussée en effectuant


Notons enfin que les quantités de carburant sont indiquées en litres dans KSB. On peut passer des en en utilisant la masse volumique du mélange carburant/comburant (liquid fuel/oxidize) qui vaut environ

Vitesse orbitale

Calculer sa vitesse orbitale est assez facile dans le cas d'une orbite circulaire, car alors cette vitesse est constante tout le long de l'orbite. Cette vitesse vaut

avec , l'altitude de l'orbite.

Encore une fois, attention aux unités. Si vous utilisez les unités standards pour (des ) ne mettez pas en , mais bien en , sinon vous obtiendrez une réponse complètement fausse. Vous pouvez transformer toutes vos valeurs en utilisant des kilomètres et, par exemple, des heures, et vous obtiendrez une valeur de en au lieu de . Une façon simple de savoir si tout est correct est de vérifier si vos résultats ont un sens. La vitesse orbitale autour de Kerbin (LKO) est d'environ . Si vous trouvez ou , il y a un problème quelque part...

Bilan de delta-v

Un bilan de delta-v consiste à prévoir en gros combien de sera nécessaire pour se rendre d'un endroit (que ce soit au sol ou en orbite) à un autre. Le total étant bien sûr la somme des des différentes phases du vol, avec à chaque fois une marge d'erreur (du en plus) en cas de fausse manœuvre ou d'imprévu. voici un exemple de bilan de delta-v :

Launch to 100 km Kerbin orbit: 4700 m/s
Trans-Munar Injection: 900 m/s
Landing on the Mun: 1000 m/s
Launch from Mun and return to Kerbin: 1000 m/s
Total : 7600 m/s

If we design our rockets to have 7600 total , and the acceleration of the launch stages are adequate, we can have confidence that our rocket is able to land on the Mun and return to Kerbin. A rocket with a little less can accomplish this goal, but it is less forgiving of less efficient piloting.

Calculate the acceleration

→ See also: Thrust-to-weight ratio

Calculating the thrust-to-weight ratio is very simple. It is important to know the thrust to weight ratio of your rocket to ensure your rocket will actually liftoff. If your TWR is less than 1, you can bet that you won't make an inch in altitude when starting from the launch pad. The minimum optimal TWR to have for your rocket at launch is 2.2.

To lift off the rocket's thrust need to exceed the gravitational force. The formula for this is simply the thrust of all of your current stage engines divided by the weight of your ship, fully fuelled.

To calculate the acceleration simply use Newton's second law:

These calculations only work when counteracting gravity. While coasting on an orbit the gravitational acceleration isn't important and thus the TWR may be below one and still work. The acceleration is at minimum directly after launch when the craft is heavy and at maximum immediately before running out of fuel, when the tanks are dry:

and

The dry mass also includes the fully fuelled upper stages of the craft. To determine the g-force simply divide achieved acceleration by . As the craft is in free fall, the gravitational acceleration isn't felt by the crew so the accelerations appear to be higher for the crew leading to cancelling out the factor g:

and

As the weight of the ship depends on the current gravitation () the TWR differs between the celestial bodies.

Conclusion

This guide will hopefully have helped with designing your rockets to allow you to get the job done—whatever it may be—with no test flights first. We hope this guide has been helpful to new and continuing KSP pilots alike.