Difference between revisions of "Atmosphere/pt"
m (Reverted edits by Rocketing Rudolph (talk) to last revision by Brendocosta) |
Rocketdocker (talk | contribs) m (Edits.) |
||
Line 133: | Line 133: | ||
== Notes == | == Notes == | ||
<references /> | <references /> | ||
+ | |||
+ | [[Category:Celestials/pt]] |
Revision as of 01:06, 19 January 2020
Planetas | Luas | ||||
---|---|---|---|---|---|
Eve | Kerbin | Laythe | |||
Duna | Jool |
A atmosfera de um corpo celeste retarda o movimento de qualquer objeto que passa por ele, uma força conhecida como arrasto atmosférico (ou simplesmente drag, em inglês). Uma atmosfera também permite a elevação aerodinâmica. Os corpos celestes com atmosferas são os planetas Eve, Kerbin, Duna e Jool, bem como Laythe, uma das luas de Jool. Apenas Kerbin e Laythe têm atmosferas que contêm oxigênio e, portanto, produzem ar de admissão para motores à jato funcionarem.
Atmosferas permitem aerofrenagem, que utiliza a própria atmosfera é mais fácil para pouso. No entanto, uma atmosfera faz decolar de um planeta mais difícil e aumenta a altitude mínima de uma órbita estável.
Contents
Arrasto
No jogo, a força de arrasto atmosférico (FD) é modelado como se segue:[1]
onde ρ é a densidade atmosférica (kg/m3), V é a velocidade do navio (m/s), d é o coeficiente de arrasto (adimensional), e A é a cross-sectional area (m2).
Note-se que a área de secção transversal não é realmente calculado no jogo. Em vez disso é Supõe-se que é directamente proporcional à massa, que é uma simplificação irrealista feita por KSP. o parâmetro FlightGlobals.Múltiplo arrastro indica que a relação de proporcionalidade é 0.008 m2/kg, assim:
onde M é a massa do navio (kg).
A densidade atmosférica ρ é diretamente proporcional à pressão atmosférica (p da unidade atm), que é uma função da altitude, a pressão da atmosfera em altitude 0 (p0), e altura escala (H):
em que p é aqui em unidades atm, e ρ em kg/m3. O fator de conversão de 1.2230948554874 kg/(m3·atm) é dado pela FlightGlobals.getAtmDensity(1.0), que retorna a densidade a 1 atmosfera (do nível do mar em Kerbin) de pressão.
O coeficiente de arrasto ( d ) é calculada como a média ponderada de massa dos valores max_drag de todas as partes na nave. Para a maioria das naves sem pára-quedas implantados, d será muito próximo de 0,2, uma vez que este é o valor max_drag da grande maioria das peças. Além disso, um grupo da mesma parte tem sempre o mesmo coeficiente de arrasto.
Como um exemplo, o coeficiente de arrasto para uma embarcação que consiste simplesmente de um Mk1-2 comando Pod (massa 4, arraste 0,2) e um implantado Mk16-XL Parachute (massa 0.3 arraste 500) é:
A velocidade terminal
A velocidade terminal de um objeto que cai através de uma atmosfera, é a velocidade a que a força da gravidade é igual à força de arrasto. Mudanças velocidade terminal em função da altitude. Com tempo suficiente, um objeto caindo na atmosfera vai desacelerar a velocidade terminal e, em seguida, permanecer em velocidade terminal para o resto de sua queda.
Velocidade terminal é importante porque é ela que descreve a quantidade de velocidade que uma nave espacial deve queimar quando estiver perto do chão, e também representa a velocidade com que uma nave deve estar viajando para cima durante uma subida de combustível ideal.
A força da gravidade (FG) é:
onde M ainda é a massa do navio, G é o constante gravitacional, M é a massa do planeta, e R é o distância do centro do planeta para o objeto em queda.
Para encontrar a velocidade terminal, montamos FG equal to FD:
Partindo do princípio de d é de 0,2 (o que é uma boa aproximação, pára-quedas previstas não estão em uso), isso simplifica a:
Para o pod Mk1-2 e exemplo de pára-quedas Mk16XL foto acima, o coeficiente de arrasto é 35,07, pelo que a sua velocidade terminal ao nível do mar em Kerbin (que é 600 & nbsp; km do centro de Kerbin) é:
Exemplos
Altitude (m) | vT (m/s) | |||||
---|---|---|---|---|---|---|
Eve | Kerbin | Duna | Jool | Laythe | ||
0 | 58,385 | 100,13 | 212,41 | 23,124 | 115,62 | |
100 | 58,783 | 101,01 | 214,21 | 23,162 | 116,32 | |
1000 | 62,494 | 109,30 | 231,16 | 23,508 | 122,83 | |
10000 | 115,27 | 240,52 | 495,18 | 27,272 | 211,77 |
On-rails de física
Se uma nave é "on rails" (ou seja, é mais do que 2.25 km a partir do navio-controlado ativamente) e sua órbita passa através da atmosfera de um planeta, uma das duas coisas vai acontecer com base na pressão atmosférica em altitude do navio:
- Abaixo de 0.01 atm: nenhum arrasto atmosférico ocorrerá e a nave será completamente afetada.
- 0.01 atm ou acima: a nave irá desaparecer.
A tabela a seguir mostra a altitude desta 0,01 atm para cada corpo celeste com uma atmosfera:
Body | Altitude (m) |
---|---|
Eve | 44 745 |
Kerbin | 25 789 |
Duna | 10 814 |
Jool | 219 397 |
Laythe | 32 755 |
Altura atmosférica
A altura atmosférica depende da altura escala do corpo celestial e é onde 0.000001th (0.0001%) de a superfície de pressão está permanecendo assim a pressão atmosférica na fronteira não é constante. Tecnicamente, uma nave em órbita de Jool pode ir mais baixo para a atmosfera (ou a atmosfera começa a partir de uma pressão mais elevada).
A atmosfera de Kerbin termina em 0.000001 & nbsp; atm e calcular onde os outros corpos celestes devem ter a altura atmosférica: