Atmosphere/hu
Bolygók | Holdak | ||||
---|---|---|---|---|---|
Eve | Kerbin | Laythe | |||
Duna | Jool |
Az égitestek "légköre" lefékez minden egyes testet, amely benne halad, az ellenállási erőt amely ilyenkor keletkezik légellenállásnak[atmospheric drag] nevezzük. A légkör lehetővé teszi az aerodinamikus emelést is. A légkörrel rendelkező égitestek rendszerint bolygók, mint az Eve, Kerbin, Duna vagy a gázóriás Jool, de a Laythe, a Jool holdja. Csak a Kerbin és a Laythe légköre tartalmaz számottevő mennyiségben oxigént.
A légnyomás exponenciálisan csökken a magasság függvényében. Egy légkör "léptékmagassága" az a magasságkülönbség, amelyen a légnyomás a e, avagy 2.718-ed részére csökken. Például a Kerbinnél ez az érték 5000 m, ez azt jelenti, hogy egy adott magasságon a légnyomás 2,718-szor nagyobb, mint 5000m-rel magasabban. Mivel az exponenciális függvény értelmezési tartománya végtelen, a játékban a légkör magassága egy vágási szintet jelent, amely felett a légnyomás teljesen 0, azaz ez a világűr határa. A valós világunkban ezt lényegében a Kármán-vonaltól számítják.
A légkörben változik a hőmérséklet is, bár ez nem számít a játékban
A légkör megengedi az üzemanyag-takarékos levegőfékezést és könnyen végrehajtható ejtőernyős leszállást. Ha a légkör elegendő oxigént tartalmaz, akkor gázturbinás sugárhajtóműveket is használhatunk. Ellenben a légkör megnehezíti a felszállást, mivel légellenállást generál, rontja a rakétahajtóművek hatékonyságát és lényegesen megnöveli a stabil keringési pálya magasságát.
Contents
Légellenállás [Drag]
A légellenállást (FD) a következőképpen írhatjuk le:
Ahol ρ a levegő sűrűsége (kg/m3), v a közegben haladó test sebessége (m/s), Cw a légellenállási tényező (dimenziótlan), és az A a vetített keresztmetszet (m2).
A levegő sűrűsége ρ állandó összetételt és hőmérsékletet feltételezve arányos a légnyomással (p mértékegysége atm), amely a felszín feletti magasság függvénye. Ha a légnyomás a tengerszinten (0 méteren) (p0), és a léptékmagasság (H) a Kerbin estében:
Ahol a p mértékegysége atm, and ρ pedig kg/m3. Az átváltási tényez ekkor 1,2230948554874 kg/(m3·atm).
Megjegyzés: jelenleg(23.0) a FAR mod segítségével lehet a valósághű aerodinamikát elérni, az alapjátékban a légellenállási tényező az alkatrészek veleszületett légellenállási tényezőinek tömegre fajlagosított átlaga! FlightGlobals A keresztmetszet esetén pedig a következő egyszerűsítéssel él:
hol m a tömeg (kg).
Végsebesség [Terminal velocity]
A légkörben eső testek végsebessége az a sebesség, amelynél a légellenállás és a tömegvonzás kiegyenlíti egymást. A végsebesség egy adott égitesten belül is változó, mivel a magasság függvénye. Elég idő elteltével az adott zuhanó test felveszik a magassághoz tartozó végsebességet, és azzal a sebességgel folytatják az esést.
A végsebesség fontos, mivel:
- Leírja a talajtérési sebességet, azaz tervezni lehet az ejtőernyős vagy a fékezőrakétás leszállást.
- Megmutatja az optimális emelkedési sebességet, melynek segítségével üzemanyag-hatékonyan érhetjük el az alacsony keringési pályát.
A tömegvonzás ereje (FG):
Ahol az m a jármű tömege, G is the gravitációs állandó, M az égitest tömege, és az r a középpontól vett távolsága az eső testnek.
A végsebességek meghatározásához fel kell írnunk, ahol a FG = FD:
Ez a KSP világában a következőképpen egyszerűsödik:
Feltéve d=0.2, mely közelítőleg ejtőernyő nélküli alapeset:
A mellékelt képen látható földet érő kapszula esetében Mk16 ernyővel, a d=35.07, így a tengerszinten:
Példák [Examples]
Altitude (m) | vT (m/s) | |||||
---|---|---|---|---|---|---|
Eve | Kerbin | Duna | Jool | Laythe | ||
0 | 58,385 | 100,13 | 212,41 | 23,124 | 115,62 | |
100 | 58,783 | 101,01 | 214,21 | 23,162 | 116,32 | |
1000 | 62,494 | 109,30 | 231,16 | 23,508 | 122,83 | |
10000 | 115,27 | 240,52 | 495,18 | 27,272 | 211,77 |
Sínen fizika [On-rails physics]
A magára hagyott eszközzel (2.25 km-né nagyobb távolságban az irányított eszköztől) a következő történik:
- 0.01 atm alatt: nincs légellenállás — a hajó mintha az űrben közlekedne
- 0.01 atm határ felett: az eszköz elprivatizálódik
Az alábbi táblázat mutatja 0.01 atm-ás határt minden légkörrel rendelkező égitestre:
Égitest | Magasság (m) |
---|---|
Eve | 0 |
Kerbin | 0 |
Duna | 0 |
Jool | 0 |
Laythe | 0 |
Légkörmagasság [Atmospheric height]
A légkör magassága függ az égitest léptékmagasságtól, ahol a nyomás 1/1000000-od (0.0001 %) része a felszíni nyomásnak, így a határon a nyomás égitestenként változik. Technikailag a Jool légköre alacsonyabban kezdődik, vagy ahogy vesszük magasabb nyomással...
A Kerbin légköre 0.000001 atm végződik és hasonlóan a következőképpen számíthatjuk a többi égitest légkörének magasságát: