Probe

From Kerbal Space Program Wiki
Jump to: navigation, search
This article is a stub. You can help KSP Wiki by expanding it.
IconProbe.png
A probe in an orbit around Kerbin

Probes are craft whose command modules have zero crew capacity, modules generally known as “probe cores”. Probes can perform missions and can often more easily reach places that manned vessels either cannot reach or cannot return from (at same cost or tech level).

Craft controlled by probe cores that include crewed modules lacking command capability (the PPD-10 Hitchhiker Storage Container or the Mobile Processing Lab MPL-LG-2) are automatically classified by KSP as probes, although players may consider them some other type of craft. Likewise, players may consider particularly large probes or probes resembling conventional planes, rockets, or rovers as belonging to other types or categories.

Probe cores

Name Cost SAS level & capabilities
0 1 2 3
Stability
Assist
(Level)
Prograde/
Retrograde
(Prograde/Retrograde)
Normal/Radial
Hold
(Normal/Anti-normal)
Target
Tracking
(Target prograde/Target retrograde)
Maneuver
(Maneuver prograde)
Probodobodyne RoveMate 800 Funds Yes No No No No
Probodobodyne Stayputnik 300 Funds No No No No No
Probodobodyne QBE 360 Funds Yes No No No No
Probodobodyne HECS 650 Funds Yes Yes No No No
Probodobodyne OKTO 450 Funds Yes No No No No
Probodobodyne OKTO2 1 480 Funds Yes Yes Yes No No
Probodobodyne HECS2 7 500 Funds Yes Yes Yes Yes Yes
RC-001S Remote Guidance Unit 2 250 Funds Yes Yes Yes Yes Yes
RC-L01 Remote Guidance Unit 3 400 Funds Yes Yes Yes Yes Yes
MK2 Drone Core 2 700 Funds Yes Yes Yes Yes Yes
MPO Probe 9 900 Funds Yes Yes Yes Yes Yes
MTM Stage 21 500 Funds Yes Yes Yes No No


Usage

Probes can be used for any type of craft and thus for any purpose. However, crewed command modules include Science opportunities for Crew Reports, EVA Reports, and, while landed, Surface Samples. Kerbonauts can also repair landing legs, wheels, and repack any parachutes, while probes cannot.

Even though probe cores constantly consume electricity and thus usually need more batteries and energy-sources than manned command pods, the mass of a probe is much lower than that of a manned vessel with comparable abilities in most cases. However, probe cores become uncontrollable if the craft runs out of electricity, so careful design and planning is required to keep probes under control. For an orbiting probe it's worthwhile to verify that the batteries will last through the orbit darkness time of the orbited body. In addition, if CommNet is enabled, then probe cores will need a connection to Kerbin's DSN or to a nearby ship with a probe control point for full functionality.

Note that a lower payload mass means that less fuel is required to bring probes to their destinations, which also means that longer trips become more feasible for probes than manned vehicles. Critically, lowering payload mass means exponentially less initial mass on launch within the atmosphere, and therefore less cost. Due to their lower mass they can use the more efficient ion engines more comfortably. Since they don't carry any Kerbals they can be used on one-way missions as well, further increasing their range and cost-savings.

While Kerbals can technically be used in one-way missions, they are not well suited for the purpose. Aside from the ethical issues of abandoned kerbals in one-way trips, there's also a financial benefit to using probes. In Career mode, hiring Kerbals costs money and it often takes numerous expensive flights to train them in their profession. Furthermore, losing them will reduce your organization's reputation. This makes it very unwise to treat Kerbals as expendable and makes unmanned exploration more important. This makes it necessary to use probes to complete missions where it would otherwise be too risky or costly to recover Kerbals. Probes with a power supply can also function indefinitely if they are in a stable orbit or parked on firm ground, allowing them to complete certain contracts without having to launch new vehicles. While Kerbals in a command pod can also survive indefinitely, there are no hiring and training costs associated with probes making them more practical for this purpose.

Control

Probe cores have three operational states:

Operational state Effects If any of the following special conditions are met
Full probe control all standard probe functions are available, such as throttle control, manual control and SAS hold (if applicable). None
Partial probe control Probes can only lock on to available SAS axis and throttle at either 0% or 100%.
  • Probe is in hiberation
  • CommNet is activated, "required signal for control" is disabled and ship is out of connection range
No probe control Probe-only ships become uncontrollable.
  • The ship runs out of Electric charge
  • CommNet is activated, "required signal for control" is enabled and the ship is out of connection range

Remarks

  • Beware, some probes don't have embedded reaction wheels.
  • The Rovemate is the only probe that can detect anomalies at 100%.
  • It is completely overkill (and highly expensive) to put a HECS2 probe on a normal manned ship. The HECS2 has its own electricity storage and a big reaction wheel system. This means with a few solar panels, some fuel and a booster, the HECS2 is an autonomous satellite.
  • Despite it's high price, the HECS2 is lighter than its components separated.
  • The RC-class probes have a Probe Control Point feature, allowing the remote control of in-range ships if a pilot is aboard.
  • The HECS2 and RC-class probes have their own Experiment storage unit.