Difference between revisions of "Reaction Control System"
m (Vernor Engine - Exception) |
Mnethercutt (talk | contribs) |
||
Line 1: | Line 1: | ||
− | The '''Reaction Control System''', | + | The '''Reaction Control System''', or '''RCS''', is a set of [[monopropellant]]-fuelled (with the exception of the [[Vernor Engine]]) thrusters primarily intended for vessel orientation in a vacuum. It is toggled on and off by pressing the R key (default key binding). In order to use RCS, a dedicated RCS fuel tank along with at least two RCS thrusters are needed. The fuel tanks for RCS are different from solid or liquid fuels tank, and currently come in five options, one for each [[Radial size|radius]], and two side-mounted types. |
It should also be noted that the [[SAS]] system will make use of the thrusters. To avoid a constant drain of RCS fuel, it is recommended to not have both the RCS and the SAS systems enabled at the same time, unless you need to keep your ship dead level and/or have RCS fuel to spare. | It should also be noted that the [[SAS]] system will make use of the thrusters. To avoid a constant drain of RCS fuel, it is recommended to not have both the RCS and the SAS systems enabled at the same time, unless you need to keep your ship dead level and/or have RCS fuel to spare. | ||
− | In real life | + | In real life the RCS system is used to control the [[attitude]] of a spacecraft rather than its orbital velocity. |
== Placement == | == Placement == | ||
The thrusters can be located anywhere on a ship. Unlike [[jet engine|jet]] and [[liquid fuel engine]]s, there is no need to place RCS thrusters on RCS fuel tanks or manually run fuel lines to them. The thruster block can provide full rotation control, whereas the linear port can only provide thrust in one direction. It is advisable to place the thrusters as far away from your centre of mass as possible, thus maximising the torque (turning force) they generate. | The thrusters can be located anywhere on a ship. Unlike [[jet engine|jet]] and [[liquid fuel engine]]s, there is no need to place RCS thrusters on RCS fuel tanks or manually run fuel lines to them. The thruster block can provide full rotation control, whereas the linear port can only provide thrust in one direction. It is advisable to place the thrusters as far away from your centre of mass as possible, thus maximising the torque (turning force) they generate. | ||
− | + | For the most effective control, it is typically most practical to place RCS thrusters with four way symmetry. In theory, you can provide suitable roll, pitch and yaw control with just one set of four way thruster blocks. Translation maneuvers are much easier when the thrusters for a specific direction are evenly distributed on both sides of the center of mass so they don't apply torque. This is usually accomplished with one set at the top and another at the bottom of your rocket. The [[SAS]] may dampen unintentional changes of heading during translation movement. | |
Beware, they will be fatally damaged if they brush against the ground. | Beware, they will be fatally damaged if they brush against the ground. |
Revision as of 23:02, 13 December 2014
The Reaction Control System, or RCS, is a set of monopropellant-fuelled (with the exception of the Vernor Engine) thrusters primarily intended for vessel orientation in a vacuum. It is toggled on and off by pressing the R key (default key binding). In order to use RCS, a dedicated RCS fuel tank along with at least two RCS thrusters are needed. The fuel tanks for RCS are different from solid or liquid fuels tank, and currently come in five options, one for each radius, and two side-mounted types.
It should also be noted that the SAS system will make use of the thrusters. To avoid a constant drain of RCS fuel, it is recommended to not have both the RCS and the SAS systems enabled at the same time, unless you need to keep your ship dead level and/or have RCS fuel to spare.
In real life the RCS system is used to control the attitude of a spacecraft rather than its orbital velocity.
Contents
Placement
The thrusters can be located anywhere on a ship. Unlike jet and liquid fuel engines, there is no need to place RCS thrusters on RCS fuel tanks or manually run fuel lines to them. The thruster block can provide full rotation control, whereas the linear port can only provide thrust in one direction. It is advisable to place the thrusters as far away from your centre of mass as possible, thus maximising the torque (turning force) they generate.
For the most effective control, it is typically most practical to place RCS thrusters with four way symmetry. In theory, you can provide suitable roll, pitch and yaw control with just one set of four way thruster blocks. Translation maneuvers are much easier when the thrusters for a specific direction are evenly distributed on both sides of the center of mass so they don't apply torque. This is usually accomplished with one set at the top and another at the bottom of your rocket. The SAS may dampen unintentional changes of heading during translation movement.
Beware, they will be fatally damaged if they brush against the ground.
Trivia
Between their introduction in 0.11 and 0.17.1 (including the old 0.13.3 demo), all RCS thrusters were massless and dragless, despite the CFG file values. Between 0.18 and 0.23 (including the 0.18.3 demo), RCS thrusters have the expected mass values. They were explicitly made massless parts again in 0.23.5.
Fuel
RCS Fuel Density is 4 kg/unit | Mass (t) |
Monopropellant () | |||||||
---|---|---|---|---|---|---|---|---|---|
Image | Part | Radial size | Cost () |
Full | Empty | Max. Temp. (K) |
Tolerance (m/s) |
Tolerance (g) | |
FL-R20 RCS Fuel Tank | Tiny | 200 (176) |
0.10 | 0.02 | 2 000 | 12 | 50 | 20 | |
FL-R120 RCS Fuel Tank | Small | 330 (186) |
0.56 | 0.08 | 2 000 | 12 | 50 | 120 | |
FL-R750 RCS Fuel Tank | Large | 1 800 (900) |
3.4 | 0.4 | 2 000 | 12 | 50 | 750 | |
Mk2 Monopropellant Tank | Mk2 | 750 (270) |
1.89 | 0.29 | 2 500 | 50 | 50 | 400 | |
Mk3 Monopropellant Tank | Mk3 | 5 040 (2 520) |
9.8 | 1.4 | 2 700 | 50 | 50 | 2 100 | |
Stratus-V Roundified Monopropellant Tank | X | 200 (176) |
0.10 | 0.02 | 2 000 | 12 | 50 | 20 | |
Stratus-V Cylindrified Monopropellant Tank | X | 250 (190) |
0.23 | 0.03 | 2 000 | 12 | 50 | 50 |
Thrusters
Image | Part | Radial size | Cost () |
Mass (t) |
Max. Temp. (K) |
Tolerance (m/s) |
Tolerance (g) |
Thrust (kN) |
Fuel (/s) |
Isp (s) (atm) | Isp (s) (vac) |
---|---|---|---|---|---|---|---|---|---|---|---|
RV-1X Variable Thruster Block | Radial mounted | 30 | 0.005 | 1 500 | 12 | 50 | 0.1 | 0.01 | 100 | 240 | |
Place Anywhere 1 Linear RCS Port | Radial mounted | 15 | 0.001 | 1 500 | 12 | 50 | 0.2 | 0.02 | 100 | 240 | |
RV-105 RCS Thruster Block | Radial mounted | 45 | 0.04 | 1 500 | 15 | 50 | 1.0 | 0.11 | 100 | 240 | |
Place-Anywhere 7 Linear RCS Port | Radial mounted | 25 | 0.02 | 2 600 | 15 | 50 | 2.0 | 0.21 | 100 | 240 | |
Vernor Engine[Note 1] | Radial mounted | 150 | 0.08 | 2 000 | 15 | 50 | 12.0 | 0.94 | 140 | 260 |
- ↑ The Vernor Engine uses a liquid fuel/oxidizer mixture.