Difference between revisions of "Wing"
m (→Modular wings: *don't link to Hungarian page;) |
m (→Modular wings: *stats table wings has been moved;) |
||
Line 28: | Line 28: | ||
* '''SD''' [Sweeping Depth] - depth of the sweeping-back of the wing: the distance between the opposite ends of the rear edge along the axis of the '''W''' dimension (for wing modules with a trailing edge perpendicular to '''W''', '''SD'''=0) | * '''SD''' [Sweeping Depth] - depth of the sweeping-back of the wing: the distance between the opposite ends of the rear edge along the axis of the '''W''' dimension (for wing modules with a trailing edge perpendicular to '''W''', '''SD'''=0) | ||
− | {{Stats | + | {{Stats table modular wings}} |
=== Irregular wings === | === Irregular wings === |
Revision as of 16:09, 8 June 2015
A wing is a type of part primarily used to provide lift during horizontal flight inside an atmosphere. Wings are the defining feature of planes, though wings may enable short-term flying or gliding by rovers and other craft. The lifting forces they generate can also be used in novel ways.
The lift generated depends on the local density of atmosphere, the square of the relative speed, and the wings' angle of attack (AoA). The atmospheric density and relative velocity squared generate the aerodynamic force called dynamic pressure (Q) according to the following formula:
- the local density of the atmosphere [kg/m³]
- the speed of the craft relative to the atmosphere [m/s]
The three-dimensional point where lift from all wings, winglets, and control surfaces averages out is the center of lift, which in rough terms acts like a lever with the fulcrum being the center of mass. The relative position of the center of lift to mass is the decisive element for an aircraft's stability. A stable airplane should have its center of lift slightly behind its center of mass and roughly co-planar.
Wings generate drag as an inherent consequence of generating lift. As drag decreases the speed of the aircraft, some kind of engine is needed for propulsion, or its initial kinetic and potential energy will be consumed in a gliding maneuver. The generated lift greatly depends on the angle of attack. The lift increases with the AoA in an interval, but at greater angles the drag increases more rapidly than the lift, decreasing the efficiency of the wing. The optimal angle of attack is that with the highest L/D (lift/drag) ratio.
By themselves, wings provide no steering control, though their lifting forces will impact movement of a craft in flight. The trailing edges are often an ideal place for attaching control surfaces.
Note: the current aerodynamic model of the game doesn't simulate the stalling or the transonic-supersonic effects
List of wings
Modular wings
A number of the wing parts are modular: they strictly follow a standardized geometry, and as a result of this they are easy to connect to each other without gaps and holes. This property makes the design of custom wing configurations easy. However, due to the tree structure of crafts, the connections between these parts in larger wing structures can become unstable, and may have to be strengthened with strut connectors.
The notation for the wing dimensions used in the table below is as follows:
- L [Length] - total length of the wing module
- W [Width] - the dimension of the edge of the wing module at its root connection
- E [End] - the dimension of the edge of the wing module at the side opposite to the root connection (for wing modules with a constant chord, E=W; for triangular wing modules, E=0).
- SD [Sweeping Depth] - depth of the sweeping-back of the wing: the distance between the opposite ends of the rear edge along the axis of the W dimension (for wing modules with a trailing edge perpendicular to W, SD=0)
Dimensions (m) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Image | Part | Radial size | Cost () |
Mass (t) |
Max. Temp. (K) |
Tolerance (m/s) |
Tolerance (g) |
Lift | L | W (/ E) | SD |
Wing Connector Type A | Radial mounted | 500 | 0.2 | 2 400 | 15 | 50 | 2 | 2 | 4 | — | |
Wing Connector Type B | Radial mounted | 500 | 0.2 | 2 400 | 15 | 50 | 2 | 4 | 2 | — | |
Wing Connector Type C | Radial mounted | 250 | 0.1 | 2 400 | 15 | 50 | 1 | 2 | 2 | — | |
Wing Connector Type D | Radial mounted | 100 | 0.05 | 2 400 | 15 | 50 | 0.5 | 2 | 1 | — | |
Wing Connector Type E | Radial mounted | 100 | 0.05 | 2 400 | 15 | 50 | 0.5 | 1 | 2 | — | |
Delta Wing | Radial mounted | 600 | 0.2 | 2 400 | 15 | 50 | 2 | 4 | 4 / 0 | — | |
Small Delta Wing | Radial mounted | 200 | 0.05 | 2 400 | 15 | 50 | 0.5 | 2 | 2 / 0 | — | |
Wing Strake | Radial mounted | 400 | 0.05 | 2 400 | 15 | 50 | 0.5 | 1 | 4 / 0 | — | |
Structural Wing Type A | Radial mounted | 500 | 0.1 | 2 400 | 15 | 50 | 1 | 2 | 4 / 0 | — | |
Structural Wing Type B | Radial mounted | 500 | 0.1 | 2 400 | 15 | 50 | 1 | 4 | 2 / 0 | — | |
Structural Wing Type C | Radial mounted | 300 | 0.05 | 2 400 | 15 | 50 | 0.5 | 4 | 1 / 0 | — | |
Structural Wing Type D | Radial mounted | 150 | 0.025 | 2 400 | 15 | 50 | 0.25 | 1 | 2 / 0 | — | |
Swept Wing Type A | Radial mounted | 500 | 0.113 | 2 400 | 15 | 50 | 1.13 | 4 | 2 / 0 | 2 | |
Swept Wing Type B | Radial mounted | 500 | 0.226 | 2 400 | 15 | 50 | 2.26 | 4 | 2 / 2 | 2 |
Irregular wings
Irregular wings have varied geometry, and are generally not intended to be connected to one another.
Image | Part | Cost () |
Mass (t) |
Max. Temp. (K) |
Tolerance (m/s) |
Lift |
---|---|---|---|---|---|---|
Basic Fin | 25 | 0.01 | 934 | 4 | 0.12 | |
AV-T1 Winglet | 500 | 0.04 | 2 000 | 12 | 0.3 | |
Tail Fin | 600 | 0.13 | 2 000 | 12 | 0.61 | |
Swept Wings | 620 | 0.275 | 2 000 | 15 | 1.37 | |
FAT-455 Aeroplane Main Wing[Note 1] | 2 800 (2 320) |
3.78 (0.78) |
2 000 | 15 | 7.8 | |
Big-S Wing Strake[Note 1] | 1 000 (920) |
0.6 (0.1) |
2 000 | 15 | 1.0 | |
Big-S Delta Wing[Note 1] | 3 000 (2 760) |
2.0 (0.5) |
2 000 | 15 | 5.0 |