Atmosphere/hu

From Kerbal Space Program Wiki
< Atmosphere
Revision as of 01:05, 19 January 2020 by Rocketdocker (talk | contribs) (Edits.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
A légköri nyomások összevetése
Bolygók Holdak
TinyEve.png Eve TinyKerbin.png Kerbin TinyLaythe.png Laythe
TinyDuna.png Duna TinyJool.png Jool

Az égitestek légköre [atmoshpere] fékez minden egyes testet, amely benne halad, az ellenállási erőt amely ilyenkor keletkezik légellenállásnak[atmospheric drag] nevezzük. A légkör lehetővé teszi az aerodinamikus emelést is. A légkörrel rendelkező égitestek rendszerint bolygók, mint az Eve, Kerbin, Duna vagy a gázóriás Jool, de a Laythe, a Jool holdja. Csak a Kerbin és a Laythe légköre tartalmaz számottevő mennyiségben oxigént.

A légnyomás exponenciálisan csökken a magasság függvényében. Egy légkör léptékmagassága az a magasságkülönbség, amelyen a légnyomás a e, avagy 2,718-ed részére csökken. Például a Kerbinnél ez az érték 5 000 m, ez azt jelenti, hogy egy adott magasságon a légnyomás 2,718-szor nagyobb, mint 5 000 m-rel magasabban. Mivel az exponenciális függvény értelmezési tartománya végtelen, a játékban a légkör magassága egy vágási szintet jelent, amely felett a légnyomás teljesen 0, azaz ez a világűr határa. A valós világunkban ezt lényegében a Kármán-vonaltól számítják.

A légkörben a magasság függvényében változik a hőmérséklet is.

A légkör megengedi az üzemanyag-takarékos levegőfékezést és könnyen végrehajtható ejtőernyős leszállást. Ha a légkör elegendő oxigént tartalmaz, akkor akár sugárhajtóműveket is használhatunk. Ellenben a légkör megnehezíti a felszállást, mivel légellenállást generál, rontja a rakétahajtóművek hatékonyságát és lényegesen megnöveli a stabil keringési pálya magasságát.

Légellenállás [Drag]

A Mk1-2 kabin egy Mk16-XL ejtőernyő által keltett légellenállás segítségével fékeződik a Kerbin légkörében.

A légellenállást [Drag] (FD) a következőképpen írhatjuk le:

Ahol ρ a levegő sűrűsége (kg/m3), v a közegben haladó test sebessége (m/s), Cw a légellenállási tényező (dimenziótlan), és az A a homlokfelület (m2).

Az egyenlet első része a dinamikus nyomás [dynamic pressure], jelölése nagybetűs "Q", ami megadja az aerodinamikai hatások nagyságát:

A levegő sűrűsége ρ állandó összetételt és hőmérsékletet feltételezve arányos a légnyomással (p mértékegysége atm), amely a "tengerszint" feletti magasság [altitude] függvénye. Ha a légnyomás a tengerszinten (0 méteren) (p0), és a léptékmagasság (H) a Kerbin estében:

Ahol a p mértékegysége atm, and ρ pedig kg/m3. Az átváltási tényez ekkor 1,2230948554874 kg/(m3·atm).

Megjegyzés: a régi (1.0 előtti) kiadásokban a FAR kiegészítő segítségével lehetett a valósághű aerodinamikát elérni, az alapjátékban a légellenállási tényező az alkatrészek veleszületett légellenállási tényezőinek tömeggel súlyozott átlaga, ami FlightGlobals API sajátossága volt!
A homlokfelület esetén a játék a következő egyszerűsítéssel élt:

ahol m a tömeg (kg).

Esési sebesség [Terminal velocity]

A légkörben eső testek esési sebessége az a végsebesség, amelynél a légellenállás és a tömegvonzás kiegyenlíti egymást. A végsebesség egy adott égitesten belül is változik, mivel a légköri jellemzők a szintmagasság függvényei. Elég idő elteltével az adott zuhanó test felveszik a magassághoz tartozó végsebességet, és azzal a sebességgel folytatják az esést.

A végsebesség fontos, mivel:

  1. Leírja a talajtérési sebességet, azaz tervezni lehet az ejtőernyős vagy a fékezőrakétás leszállást.
  2. Megmutatja az optimális emelkedési sebességet, melynek segítségével üzemanyag-hatékonyan érhetjük el az alacsony keringési pályát.

A tömegvonzás ereje (FG):

Ahol az m a jármű tömege, G is the gravitációs állandó, M az égitest tömege, és az r a középpontól vett távolsága az eső testnek.

A végsebességek meghatározásához fel kell írnunk, ahol a FG = FD:

Ez a KSP világában a következőképpen egyszerűsödött az 1.0-ás kiadás előtt:

Feltéve d=0,2, mely közelítőleg az ejtőernyő nélküli alapeset:

Lássunk egy példát a régi kiadásokra: A mellékelt képen látható földet érő Mk1-2 kapszula (tömeg 4, légellenállás 0,2) esetében Mk16 nyitott ernyővel (tömeg 0,3, légellenállás 500):

Először számoljuk ki a teljes ellenállást, ami ugye a tömeggel súlyozott átlag:

a d=35.07, azaz a tengerszinten így alakul az eső test végsebessége:

Példák [Examples]

Magasság (m) vT (m/s)
Eve Kerbin Duna Jool Laythe
0 58,385 100,13 212,41 23,124 115,62
100 58,783 101,01 214,21 23,162 116,32
1000 62,494 109,30 231,16 23,508 122,83
10000 115,27 240,52 495,18 27,272 211,77

Megvezetett fizika [On-rails physics]

A megvezetett fizika szerint a magára hagyott eszközzel (a régi kiadásokban 2,25 km-nél, jelenleg 18 km-nél nagyobb távolságban az irányított eszköztől) a következő történik:

  • 0,01 atm alatt: nincs légellenállás — a hajó mintha az űrben közlekedne
  • 0,01 atm határ felett: az eszköz eltűnik

Az alábbi táblázat mutatja 0,01 atm-ás határt minden légkörrel rendelkező égitest esetén:

Égitest Magasság (m)
Eve 44 745
Kerbin 25 789
Duna 10 814
Jool 219 397
Laythe 32 755

Légkörmagasság [Atmospheric height]

A légkör magassága az a tengerszint feletti magasságot, ahol a nyomás 1/1 000 000-od (0,0001%) része a tengerszinti(0 m) nyomásnak. Mivel ez függvénye az égitest léptékmagasságának, ezért ez azt jelenti, hogy ez a magassághatár és a határon a nyomás égitestenként változik. Technikailag a Jool légköre alacsonyabban kezdődik, vagy ahogy vesszük magasabb nyomással...

A Kerbin légköre 0,000001 atm végződik és hasonlóan a következőképpen számíthatjuk a többi égitest légkörének magasságát:

Lásd még

Megjegyzések