Reaction Control System/it
Il Reaction Control System, o RCS, è una serie di ugelli alimentati a monopropellente (salvo il Motore Vernor) intesi principalmente per agevolare la manovrabilità e l'orientamento di un veicolo nel vuoto. E' attivato o disattivato alla pressione del tasto R (tasto default).I Kerbal che rientrano da una EVA ricaricano automaticamente i loro jetpack RCS senza ridurre il monopropellente della nave da cui attingono carburante, per qualche ragione non chiara. I controlli dei jetpack RCS sono differenti da quelli della navetta, ma questo articolo non tratta i jetpack RCS.
Per utilizzare gli RCS, è necessario avere a disposizione un serbatoio di monopropellente ed almeno due ugelli RCS installati sul mezzo. I serbatoi per il monopropellente sono diversi e separati da quelli per carburante solido o liquido. C'è un serbatoio per ognuno dei diametri radiali disponibile, e anche piccoli serbatoi da montare lateralmente. A parte i serbatoi dedicati, una quantità di monopropellente è immagazzinata nei moduli di comando ma non nelle unità sonda.
E' utile notare che il sistema SAS utilizza gli RCS insieme ai sistemi giroscopici se gli ugelli sono attivi. Per evitare inutili sprechi di monopropellente, è consigliabile non attivare RCS e SAS contemporaneamente, a meno che non sia necessari mantenere la navetta perfettamente immobile o se si ha molto carburante RCS a disposizione. E' anche importante notare che abilitare entrambi i sistemi insieme può causare conflitti fra sistemi multipli di controllo di assettopresenti sul veicolo, consumando un'enorme quantità di risorse (in questo caso monopropellente e carica elettrica).
Nella realtà, l'RCS è usato per controllare l'attitudine di una nave spaziale piuttosto che la sua velocità orbitale.
Contents
Placement
The thrusters can be located anywhere on a ship. Unlike jet and liquid fuel engines, there is no need to place RCS thrusters on RCS fuel tanks or manually run fuel lines to them. The thruster block can provide full rotation control, whereas the linear port can only provide thrust in one direction. For rotational purposes, it is advisable to place the thrusters as far away from your center of mass as possible, thus maximizing the torque they generate. For the most effective control, it is typically most practical to place RCS thrusters with four way symmetry. In theory, you can provide suitable roll, pitch, and yaw control with just one set of four way thruster blocks. Translation maneuvers are easier when the thrusters for a specific direction are evenly distributed on both sides of the center of mass so they don't apply torque. This is usually accomplished with one set at the top and another at the bottom of your rocket. SAS may dampen unintentional changes of heading during translation movement.
If you are in space and enable RCS and notice suddenly that the axes of control seem to be all wrong, it's probably because your craft's attitude (not to be confused with a crew with a bad attitude) has it positioned in such a way that its control axes do not align with the navball. For this reason, you can set the camera to LOCKED mode such that it always aligns with the spacecraft (i.e. up on camera is up on the spacecraft) and RCS controls will line up with what you are expecting again. Attempting to do an RCS maneuver without adjusting the camera appropriately can quickly make you want to put your face into a running Mainsail.
RCS thrusters will be fatally damaged if they brush against the ground.
Trivia
Between their introduction in 0.11 and 0.17.1 (including the old 0.13.3 demo), all RCS thrusters were massless and dragless, despite the CFG file values. Between 0.18 and 0.23 (including the 0.18.3 demo), RCS thrusters have the expected mass values. They were explicitly made massless parts again in 0.23.5.
Fuel
Densità del carburante: 4 kg/unità | Massa (t) |
Monopropellente () | |||||||
---|---|---|---|---|---|---|---|---|---|
Immagine | Componente | Diametro Radiale | Costo () |
Pieno | Vuoto | Temp. Max. (K) |
Tolleranza (m/s) |
Tolleranza | |
Serbatoio di carburante FL-R20 SCR | minuscolo | 200 (176) |
0,10 | 0,02 | 2 000 | 12 | 50 | 20 | |
Serbatoio di carburante FL-R120 SCR | piccolo | 330 (186) |
0,56 | 0,08 | 2 000 | 12 | 50 | 120 | |
Serbatoio di carburante FL-R750 SCR | grande | 1 800 (900) |
3,4 | 0,4 | 2 000 | 12 | 50 | 750 | |
Serbatoio per monopropellente Mk2 | Mk2 | 750 (270) |
1,89 | 0,29 | 2 500 | 50 | 50 | 400 | |
Serbatoio per monopropellente Mk3 | Mk3 | 5 040 (2 520) |
9,8 | 1,4 | 2 700 | 50 | 50 | 2 100 | |
Serbatoio per monopropellente Rotondizzato Stratus-V | X | 200 (176) |
0,10 | 0,02 | 2 000 | 12 | 50 | 20 | |
Serbatoio per monopropellente Cilindrizzato Stratus-V | X | 250 (190) |
0,23 | 0,03 | 2 000 | 12 | 50 | 50 |
Thrusters
Immagine | Componente | Diametro Radiale | Costo () |
Massa (t) |
Temp. Max. (K) |
Tolleranza (m/s) |
Tolleranza | Spinta (kN) |
Fuel (/s) |
Isp (s) (atm.) | Isp (s) (Vuoto) |
---|---|---|---|---|---|---|---|---|---|---|---|
Blocco di propulsori variabile RV-1X | Montaggio radiale | 30 | 0,005 | 1 500 | 12 | 50 | 0,1 | 0,01 | 100 | 240 | |
Ugello SCR Lineare a Collocazione Libera #1 | Montaggio radiale | 15 | 0,001 | 1 500 | 12 | 50 | 0,2 | 0,02 | 100 | 240 | |
Blocco di propulsori SCR RV-105 | Montaggio radiale | 45 | 0,04 | 1 500 | 15 | 50 | 1,0 | 0,11 | 100 | 240 | |
Ugello SCR Lineare a Collocazione Libera #7 | Montaggio radiale | 25 | 0,02 | 2 600 | 15 | 50 | 2,0 | 0,21 | 100 | 240 | |
Motore Vernor[Nota 1] | Montaggio radiale | 150 | 0,08 | 2 000 | 15 | 50 | 12,0 | 0,94 | 140 | 260 |
- ↑ Il Motore Vernor usa contemporaneamente carburante liquido e ossidante.