Difference between revisions of "SAS"

From Kerbal Space Program Wiki
Jump to: navigation, search
(SAS/ASAS Parts)
Line 28: Line 28:
 
[[Advanced S.A.S Module|Advanced S.A.S]] does not produce torque itself (or if it does, the forces are small); all it does is alter the PID values.
 
[[Advanced S.A.S Module|Advanced S.A.S]] does not produce torque itself (or if it does, the forces are small); all it does is alter the PID values.
  
== SAS/ASAS Parts ==
+
== SAS Parts ==
The game currently offers four SAS/ASAS units: a small radius SAS, a small radius ASAS, a large radius ASAS and an 'avionics package'. You also get some SAS functionality from command modules.
+
SAS has 4 dedicated parts as well as being included in all Command Pods and Probe bodies.
 
===Dedicated Units===
 
===Dedicated Units===
 
{{Template:Stats Table SAS|{{Template:SUBPAGENAME}}}}
 
{{Template:Stats Table SAS|{{Template:SUBPAGENAME}}}}
 
===Command Pods===
 
===Command Pods===
 
{{Stats Table Command Pods}}
 
{{Stats Table Command Pods}}

Revision as of 15:28, 26 July 2013

SAS is a flight system that uses reaction wheels and control surfaces to counter rotation and control heading. Current SAS operates much like ASAS performed prior to Update .21. All command pods and probe contain built in SAS.

Effect of SAS

SAS units exert torque to stop vessel rotation. This torque is not available to the command unit for control authority and is only active when the unit is turned on.

Effect of ASAS

Although ASAS says that it does not exert any force, this is not true. Testing shows that ASAS units exert a small amount of torque. How much and why is not currently known. This torque appears to be under control of the pilot even when SAS is turned off.

ASAS directly runs your ship controls as if it were pressing the "qweasd" keys, and thus affects control surfaces and engine gimbal. You can see it functioning by looking at the bottom left-hand corner and watching the pitch and yaw twitch around. ASAS does not perform integration on roll and thus will not attempt to correct for it. You can control the ship while ASAS is on, but the inputs are additive so the SAS may fight you. This can be useful when trying to make slow movements or fine adjustments.

Since ASAS also controls heading, it can be extremely useful for lander missions. Turn on SAS while facing straight up (relative to the surface) and then use the arrow keys to fight the ASAS and kill lateral motion. The ASAS will keep returning your vessel to upright so you can focus on steering without worrying about falling over.

Control

You can turn the system on and off with the T key and temporarily invert the state by holding the F key (for example, if SAS is on, holding F will turn it off, and releasing F will turn it back on). The current state of the SAS system is shown by a light on your Navball. The SAS and ASAS are controlled together, as ASAS adds heading control to the standard SAS rotation dampening.

All command pods offer a small amount of SAS torque, and you can add to this by adding more SAS units to the craft. ASAS however is simply either there or not; you can not add multiple units to increase its effect.

Theory

The S.A.S. modules use a P.I.D. system, which stands for “Proportional, Integral, Derivative”. The PID is applied to the vessel's angular velocity, not its heading.

  • Proportional means the S.A.S. module applies a turning-force that is proportional to the speed of rotation. In other words, the faster the ship is spinning, the harder the module tries to correct the spin.
  • Integral means the S.A.S. module increases the corrective force the longer the ship is off-target. Since the integral of speed is position, this corrects the vessel's heading (angle is the integral of angular velocity). Since the summed integral value is set to zero when SAS is turned on, the controller will attempt to lock the vessel's heading to whatever it was when SAS was turned on.
  • Derivative means the S.A.S. module takes the angular acceleration of the ship into account and tries to apply a force against it. So the faster the ship is going "into" the spin, the harder the S.A.S. module tries to stop it. This is supposed to dampen the action of the S.A.S module and prevent overshoot, as well as dampening any accelerating turn or roll.

The SAS functionality found within command modules and standard SAS units use only PD, with no I, and thus do not lock the heading of the vessel.

The PID control is applied to the vessel's rotational velocity at the command point. This means that large rockets that tend to wobble out of control during flight do so because the SAS sees the tip (where the command module usually is) rotating and assumes the entire vessel is spinning this fast. For this reason, "wobble" can be largely eliminated by controlling the vessel as close to the CG as possible. This can be accomplished by placing a command module or docking port in the middle of the rocket. Right click the unit and select "Control From Here" to change the control point. If you end up controlling the "dead" end of the rocket after stage separation, simply press the "[" or "]" keys to select the appropriate section.

Advanced S.A.S does not produce torque itself (or if it does, the forces are small); all it does is alter the PID values.

SAS Parts

SAS has 4 dedicated parts as well as being included in all Command Pods and Probe bodies.

Dedicated Units

Image Part Radial size Cost
(Funds)
Mass
(t)
Max. Temp.
(K)
Tolerance
(m/s)
Tolerance
(g)
Torque
(kN·m)
Electricity
(⚡/s)
Inline reaction wheel.png
Small Inline Reaction Wheel Tiny 600 0.05 2 000 9 50 5 0.25
(15 ⚡/min)
Inline advanced stabilizer.png
Advanced Inline Stabilizer Small 1 200 0.1 2 000 9 50 15 0.45
(27 ⚡/min)
ASAS large.png
Advanced Reaction Wheel Module, Large Large 2 100 0.2 2 000 9 50 30 0.6
(36 ⚡/min)

Command Pods

Image Part Radial size Cost
(Funds)
Mass
(t)
Max. Temp.
(K)
Tolerance
(m/s)
Tolerance
(g)
Torque
(kN · m)
S.A.S.
level
Required Crew/
Power
Capacity
(⚡)
MK1COCKPIT.png
Mk1 Cockpit Small 1 250
(1 241)
1.28
(1.25)
2 000
(1 100)
40 50 10 Crew[Note 1] Crew 50 ⚡
7.5 Units of fuel MP
Mk1 Inline Cockpit.png
Mk1 Inline Cockpit Small 1 600
(1 591)
1.03
(1.00)
2 000
(1 100)
40 50 10 Crew[Note 1] Crew 50 ⚡
7.5 Units of fuel MP
Mk2 Cockpit.png
Mk2 Cockpit Mk2 3 500
(3 482)
2.06
(2.00)
2 500
(1 400)
45 50 15 Crew[Note 1] Crew + Crew 150 ⚡
15 Units of fuel MP
Mk2 InlineCockpit.png
Mk2 Inline Cockpit Mk2 3 500
(3 470)
2.10
(2.00)
2 500
(1 400)
45 50 15 Crew[Note 1] Crew + Crew 150 ⚡
25 Units of fuel MP
Mk3 Cockpit.png
Mk3 Cockpit Mk3, Small 10 000
(9 880)
3.90
(3.50)
2 700
(1 500)
50 50 40/40/20[Note 2] Crew[Note 1] Crew + CrewCrewCrew 500 ⚡
100 Units of fuel MP
Mk1CommandPod Dark.png
Mk1 Command Pod Small, Tiny 600
(588)
0.84
(0.80)
2 200
(1 200)
14 50 5 Crew[Note 1] Crew 50 ⚡
10 Units of fuel MP
Mk1-3CommandPod.png
Mk1-3 Command Pod Large, Small 3 800
(3 764)
2.72
(2.60)
2 400
(1 400)
45 50 15 Crew[Note 1] Crew + CrewCrew 150 ⚡
30 Units of fuel MP
LanderCanMK1.png
Mk1 Lander Can Small 1 500
(1 482)
0.66
(0.60)
2 000
(1 000)
8 50 3 Crew[Note 1] Crew 50 ⚡
15 Units of fuel MP
Mk2canN.png
Mk2 Lander Can Large 3 250
(3 202)
1.515
(1.355)
2 000
(1 200)
8 50 15 Crew[Note 1] Crew + Crew 100 ⚡
40 Units of fuel MP
Cupola.PNG
PPD-12 Cupola Module Large, Small 3 200
(3 188)
1.80
(1.76)
2 000
(1 000)
8 50 9 Crew[Note 1] Crew 200 ⚡
10 Units of fuel MP
Commandseat.png
EAS-1 External Command Seat Radial mounted 200 0.05 1 200 6 50 Crew[Note 1] Crew
RoveMate White.png
Probodobodyne RoveMate Small 800 0.15 1 200 12 50 0 2.4 ⚡/min
(144 ⚡/h)
120 ⚡
QBE.png
Probodobodyne QBE Tiny 360 0.07 1 200 15 50 0 1.5 ⚡/min
(90 ⚡/h)
5 ⚡
HECS.png
Probodobodyne HECS Tiny 650 0.1 1 200 12 50 0.5 1 1.5 ⚡/min
(90 ⚡/h)
10 ⚡
OKTO.png
Probodobodyne OKTO Tiny 450 0.1 1 200 12 50 0.3 0 1.2 ⚡/min
(72 ⚡/h)
10 ⚡
OKTO2.png
Probodobodyne OKTO2 Tiny 1 480 0.04 1 200 12 50 2 1.8 ⚡/min
(108 ⚡/h)
5 ⚡
Stayputnik.png
Probodobodyne Stayputnik Tiny 300 0.05 1 800 12 50 1.67 ⚡/min
(100 ⚡/h)
10 ⚡
HECS2.png
Probodobodyne HECS2 Small 7 500 0.2 2 000 8 50 10 3 3.0 ⚡/min
(180 ⚡/h)
1 000 ⚡
Probestack.png
RC-001S Remote Guidance Unit Small 2 250 0.1 2 000 9 50 0.5 3 3.0 ⚡/min
(180 ⚡/h)
15 ⚡
Probehuge.png
RC-L01 Remote Guidance Unit Large 3 400 0.5 2 000 9 50 1.5 3 4.8 ⚡/min
(288 ⚡/h)
30 ⚡
MK2 Drone Core.png
MK2 Drone Core Mk2 2 700 0.2 2 500 20 50 15/3/3[Note 2] 3 3.0 ⚡/min
(180 ⚡/h)
250 ⚡
MPO.png
MPO Probe Small 9 900
(9 854)
0.895
(0.395)
2 200 9 50 6 3 3.0 ⚡/min
(180 ⚡/h)
1 000 ⚡
45 Units of fuel LF
55 Units of fuel O
MTM.png
MTM Stage Small 21 500
(6 300)
0.795
(0.415)
2 200 12 50 12 2 1.8 ⚡/min
(108 ⚡/h)
4 000 ⚡
3 800 Xenon unit XE
  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 In the "Career" mode in manned command modules, the performance and functionality of the SAS is determined by the presence of at least one kerbonaut with the specialization "Pilot" and the level of his specialization. In the "Science" and "Sandbox" modes, a kerbonaut with any specialization can use all the functionality of the SAS on board the manned command module without restrictions.
  2. 2.0 2.1 Torque differs between axes. These numbers are for pitch/yaw/roll respectively.