Difference between revisions of "SAS"
Moon Goddess (talk | contribs) (added Outdated Box) |
(*updated some information regarding (A)SAS;) |
||
Line 1: | Line 1: | ||
− | + | The '''SAS''' is a flight system that uses control systems like reaction wheels control the current rotation. Prior to {{version|0.21}} there was a distinction between SAS and ASAS. All command pods and probe contain built in SAS except the command seat. | |
− | |||
− | SAS is a flight system that uses reaction wheels | ||
== Effect of SAS == | == Effect of SAS == | ||
− | + | When the craft is equipped with at least one SAS unit, it can utilize this unit to dampen the rotation and finally lock onto a specific orientation. This system will utilize all available control systems, like the user would with pressing the keys: | |
− | + | * Torque supplied by [[command module]]s | |
− | + | * Gimbaling of [[engines]] | |
− | + | * Control surfaces | |
− | + | * [[RCS]], if activated | |
− | |||
− | Since | + | It will first dampen the rotation and reaching a specific value and then will try to lock onto its current orientation. The user can override the current rotation for any [[axis]]. Since it controls heading, it can be extremely useful for lander missions. |
== Control == | == Control == | ||
− | + | The system can be turned on and off with the T key and temporarily invert the state by holding the F key (for example, if SAS is on, holding F will turn it off, and releasing F will turn it back on). The current state of the SAS system is shown by a blue light on the [[navball]]. The [[Inline Advanced Stabilizer]] and [[Inline Reaction Wheel]] add additional torque to the command module and the first one also includes a SAS unit. | |
− | |||
− | |||
==Theory== | ==Theory== | ||
+ | {{Outdated}} | ||
The S.A.S. modules use a P.I.D. system, which stands for “Proportional, Integral, Derivative”. The PID is applied to the vessel's angular velocity, not its heading. | The S.A.S. modules use a P.I.D. system, which stands for “Proportional, Integral, Derivative”. The PID is applied to the vessel's angular velocity, not its heading. | ||
* ''Proportional'' means the S.A.S. module applies a turning-force that is proportional to the speed of rotation. In other words, the faster the ship is spinning, the harder the module tries to correct the spin. | * ''Proportional'' means the S.A.S. module applies a turning-force that is proportional to the speed of rotation. In other words, the faster the ship is spinning, the harder the module tries to correct the spin. | ||
Line 33: | Line 29: | ||
SAS has 4 dedicated parts as well as being included in all Command Pods and Probe bodies. | SAS has 4 dedicated parts as well as being included in all Command Pods and Probe bodies. | ||
===Dedicated Units=== | ===Dedicated Units=== | ||
− | {{ | + | {{Stats Table SAS}} |
===Command Pods=== | ===Command Pods=== | ||
{{Stats Table Command Pods}} | {{Stats Table Command Pods}} | ||
+ | |||
+ | == See also == | ||
+ | * [http://forum.kerbalspaceprogram.com/entry.php/740-Updated-Information-on-SAS-in-0-21-1 Updated Information on SAS in 0.21.1] blog entry by C7 | ||
+ | |||
+ | [[Category:Control]] |
Revision as of 14:26, 30 July 2013
The SAS is a flight system that uses control systems like reaction wheels control the current rotation. Prior to version 0.21 there was a distinction between SAS and ASAS. All command pods and probe contain built in SAS except the command seat.
Contents
Effect of SAS
When the craft is equipped with at least one SAS unit, it can utilize this unit to dampen the rotation and finally lock onto a specific orientation. This system will utilize all available control systems, like the user would with pressing the keys:
- Torque supplied by command modules
- Gimbaling of engines
- Control surfaces
- RCS, if activated
It will first dampen the rotation and reaching a specific value and then will try to lock onto its current orientation. The user can override the current rotation for any axis. Since it controls heading, it can be extremely useful for lander missions.
Control
The system can be turned on and off with the T key and temporarily invert the state by holding the F key (for example, if SAS is on, holding F will turn it off, and releasing F will turn it back on). The current state of the SAS system is shown by a blue light on the navball. The Inline Advanced Stabilizer and Inline Reaction Wheel add additional torque to the command module and the first one also includes a SAS unit.
Theory
This page or section is in need of being brought up to date. Please help Kerbal Space Program Wiki by fixing inaccurate or outdated information. |
The S.A.S. modules use a P.I.D. system, which stands for “Proportional, Integral, Derivative”. The PID is applied to the vessel's angular velocity, not its heading.
- Proportional means the S.A.S. module applies a turning-force that is proportional to the speed of rotation. In other words, the faster the ship is spinning, the harder the module tries to correct the spin.
- Integral means the S.A.S. module increases the corrective force the longer the ship is off-target. Since the integral of speed is position, this corrects the vessel's heading (angle is the integral of angular velocity). Since the summed integral value is set to zero when SAS is turned on, the controller will attempt to lock the vessel's heading to whatever it was when SAS was turned on.
- Derivative means the S.A.S. module takes the angular acceleration of the ship into account and tries to apply a force against it. So the faster the ship is going "into" the spin, the harder the S.A.S. module tries to stop it. This is supposed to dampen the action of the S.A.S module and prevent overshoot, as well as dampening any accelerating turn or roll.
The SAS functionality found within command modules and standard SAS units use only PD, with no I, and thus do not lock the heading of the vessel.
The PID control is applied to the vessel's rotational velocity at the command point. This means that large rockets that tend to wobble out of control during flight do so because the SAS sees the tip (where the command module usually is) rotating and assumes the entire vessel is spinning this fast. For this reason, "wobble" can be largely eliminated by controlling the vessel as close to the CG as possible. This can be accomplished by placing a command module or docking port in the middle of the rocket. Right click the unit and select "Control From Here" to change the control point. If you end up controlling the "dead" end of the rocket after stage separation, simply press the "[" or "]" keys to select the appropriate section.
Advanced S.A.S does not produce torque itself (or if it does, the forces are small); all it does is alter the PID values.
SAS Parts
SAS has 4 dedicated parts as well as being included in all Command Pods and Probe bodies.
Dedicated Units
Image | Part | Radial size | Cost () |
Mass (t) |
Max. Temp. (K) |
Tolerance (m/s) |
Tolerance (g) |
Torque (kN·m) |
Electricity (⚡/s) |
---|---|---|---|---|---|---|---|---|---|
Small Inline Reaction Wheel | Tiny | 600 | 0.05 | 2 000 | 9 | 50 | 5 | 0.25 (15 ⚡/min) | |
Advanced Inline Stabilizer | Small | 1 200 | 0.1 | 2 000 | 9 | 50 | 15 | 0.45 (27 ⚡/min) | |
Advanced Reaction Wheel Module, Large | Large | 2 100 | 0.2 | 2 000 | 9 | 50 | 30 | 0.6 (36 ⚡/min) |
Command Pods
Image | Part | Radial size | Cost () |
Mass (t) |
Max. Temp. (K) |
Tolerance (m/s) |
Tolerance (g) |
Torque (kN · m) |
S.A.S. level |
Required Crew/ Power |
Capacity (⚡) |
---|---|---|---|---|---|---|---|---|---|---|---|
Mk1 Cockpit | Small | 1 250 (1 241) |
1.28 (1.25) |
2 000 (1 100) |
40 | 50 | 10 | [Note 1] | 50 ⚡ 7.5 MP | ||
Mk1 Inline Cockpit | Small | 1 600 (1 591) |
1.03 (1.00) |
2 000 (1 100) |
40 | 50 | 10 | [Note 1] | 50 ⚡ 7.5 MP | ||
Mk2 Cockpit | Mk2 | 3 500 (3 482) |
2.06 (2.00) |
2 500 (1 400) |
45 | 50 | 15 | [Note 1] | + | 150 ⚡ 15 MP | |
Mk2 Inline Cockpit | Mk2 | 3 500 (3 470) |
2.10 (2.00) |
2 500 (1 400) |
45 | 50 | 15 | [Note 1] | + | 150 ⚡ 25 MP | |
Mk3 Cockpit | Mk3, Small | 10 000 (9 880) |
3.90 (3.50) |
2 700 (1 500) |
50 | 50 | 40/40/20[Note 2] | [Note 1] | + | 500 ⚡ 100 MP | |
Mk1 Command Pod | Small, Tiny | 600 (588) |
0.84 (0.80) |
2 200 (1 200) |
14 | 50 | 5 | [Note 1] | 50 ⚡ 10 MP | ||
Mk1-3 Command Pod | Large, Small | 3 800 (3 764) |
2.72 (2.60) |
2 400 (1 400) |
45 | 50 | 15 | [Note 1] | + | 150 ⚡ 30 MP | |
Mk1 Lander Can | Small | 1 500 (1 482) |
0.66 (0.60) |
2 000 (1 000) |
8 | 50 | 3 | [Note 1] | 50 ⚡ 15 MP | ||
Mk2 Lander Can | Large | 3 250 (3 202) |
1.515 (1.355) |
2 000 (1 200) |
8 | 50 | 15 | [Note 1] | + | 100 ⚡ 40 MP | |
PPD-12 Cupola Module | Large, Small | 3 200 (3 188) |
1.80 (1.76) |
2 000 (1 000) |
8 | 50 | 9 | [Note 1] | 200 ⚡ 10 MP | ||
EAS-1 External Command Seat | Radial mounted | 200 | 0.05 | 1 200 | 6 | 50 | — | [Note 1] | — | ||
Probodobodyne RoveMate | Small | 800 | 0.15 | 1 200 | 12 | 50 | — | 0 | 2.4 ⚡/min (144 ⚡/h) |
120 ⚡ | |
Probodobodyne QBE | Tiny | 360 | 0.07 | 1 200 | 15 | 50 | — | 0 | 1.5 ⚡/min (90 ⚡/h) |
5 ⚡ | |
Probodobodyne HECS | Tiny | 650 | 0.1 | 1 200 | 12 | 50 | 0.5 | 1 | 1.5 ⚡/min (90 ⚡/h) |
10 ⚡ | |
Probodobodyne OKTO | Tiny | 450 | 0.1 | 1 200 | 12 | 50 | 0.3 | 0 | 1.2 ⚡/min (72 ⚡/h) |
10 ⚡ | |
Probodobodyne OKTO2 | Tiny | 1 480 | 0.04 | 1 200 | 12 | 50 | — | 2 | 1.8 ⚡/min (108 ⚡/h) |
5 ⚡ | |
Probodobodyne Stayputnik | Tiny | 300 | 0.05 | 1 800 | 12 | 50 | — | — | 1.67 ⚡/min (100 ⚡/h) |
10 ⚡ | |
Probodobodyne HECS2 | Small | 7 500 | 0.2 | 2 000 | 8 | 50 | 10 | 3 | 3.0 ⚡/min (180 ⚡/h) |
1 000 ⚡ | |
RC-001S Remote Guidance Unit | Small | 2 250 | 0.1 | 2 000 | 9 | 50 | 0.5 | 3 | 3.0 ⚡/min (180 ⚡/h) |
15 ⚡ | |
RC-L01 Remote Guidance Unit | Large | 3 400 | 0.5 | 2 000 | 9 | 50 | 1.5 | 3 | 4.8 ⚡/min (288 ⚡/h) |
30 ⚡ | |
MK2 Drone Core | Mk2 | 2 700 | 0.2 | 2 500 | 20 | 50 | 15/3/3[Note 2] | 3 | 3.0 ⚡/min (180 ⚡/h) |
250 ⚡ | |
MPO Probe | Small | 9 900 (9 854) |
0.895 (0.395) |
2 200 | 9 | 50 | 6 | 3 | 3.0 ⚡/min (180 ⚡/h) |
1 000 ⚡ 45 LF 55 O | |
MTM Stage | Small | 21 500 (6 300) |
0.795 (0.415) |
2 200 | 12 | 50 | 12 | 2 | 1.8 ⚡/min (108 ⚡/h) |
4 000 ⚡ 3 800 XE |
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 In the "Career" mode in manned command modules, the performance and functionality of the SAS is determined by the presence of at least one kerbonaut with the specialization "Pilot" and the level of his specialization. In the "Science" and "Sandbox" modes, a kerbonaut with any specialization can use all the functionality of the SAS on board the manned command module without restrictions.
- ↑ 2.0 2.1 Torque differs between axes. These numbers are for pitch/yaw/roll respectively.
See also
- Updated Information on SAS in 0.21.1 blog entry by C7