Difference between revisions of "Fuel tank"
m (Reverted edits by Rocketing Rudolph (talk) to last revision by Mad Rocket Scientist) |
(→Monopropellant fuel tanks) |
||
Line 30: | Line 30: | ||
=== Monopropellant fuel tanks === | === Monopropellant fuel tanks === | ||
+ | Monopropellant tanks store [[monopropellant]] gas, which is consumed by [[RCS]] maneuvering thrusters. | ||
+ | |||
+ | In real life, the term "monopropellant" is used to refer to fuels that do not require additional reactants to effect energy: although liquid fuel requires oxidizer to burn to produce thrust, monopropellants require no additional chemicals to work. A well-known real life monopropellant is [https://en.wikipedia.org/wiki/Hydrazine#Rocket_fuel hydrazine]. | ||
{{Stats Table RCS Fuel}} | {{Stats Table RCS Fuel}} | ||
Revision as of 13:06, 8 May 2017
A fuel tank is a dedicated part to contain of fuels and provide it to the appropriate reaction engines or consumers. In the stock game there are tanks for four different fuel mixtures:
- Liquid fuel and oxidizer in the usual ratio of 9 parts liquid fuel for 11 parts oxidizer
- Liquid fuel alone usage in oxygenated atmospheres
- Monopropellant without any oxidizer usually used for RCS
- Xenon gas for ion engines
- Ore for processing into liquid fuel, liquid fuel and oxidizer, or monopropellant with the ISRU Converter
The distribution through the rocket depends on the type of fuel. While xenon gas and monopropellant are available everywhere in the craft without additional plumbing, engines using liquid fuel and oxidizer needs to be attached to the tank with only fuel crossing parts between them.
Contents
Overview
A liquid fuel tank can provide fuel to any engine directly attached to it. When tanks are directly connected together in a stack they will feed their contents from the top to the bottom of the stack. It is possible to mount additional fuel tanks radially with or without decouplers, and to transfer their contents to a central tank using fuel lines. This can be used to construct an asparagus staging system where outer tanks are drained first and dropped once empty, while still keeping the central tank full. This can be tricky to construct when dealing with very large rockets as the rocket engines of the outer layers have to be kept running long enough to ensure the rest of the rocket can get into orbit once they have stopped providing thrust.
Real world application
In real spacecraft, the liquid fuel is usually highly refined kerosene for the first stage and/or liquid hydrogen (LH2) for subsequent stages, and the oxidizer is usually liquid oxygen (LOX). Both the fuel and oxidizer are stored under slight pressure in special fuel tanks to keep them from vaporizing; this is because LH2 and LOX require temperatures below 20.28 K (−252.87 °C, −423.17 °F) and 90.19 K (−182.96 °C, −297.33 °F) respectively to remain in a liquid state. In comparison, jet aircraft carry only liquid fuel, as jet engines can rely solely on atmospheric oxygen as oxidizer. Most jet engines operate using a refined kerosene hydro-carbon, similar to diesel, which can actually be used in some diesel engines. However, it is not recommended, or legal in some places, to use jet fuel as a replacement for diesel due to its high lead content and lesser lubricating ability. Ore is a simplification for some kind of chemical which could be mined from the ground on other planets, and converted to a rocket fuel.
List of tanks
Rocket fuel tanks
These tanks contain both liquid fuel and oxidizer and are designed for use with liquid fuel engines. They can also be used for jet engines, however liquid fuel tanks are preferable, because they don't contain oxidizer, which is not used by jet engines. The oxidizer/liquid fuel ratio is exact except for the Oscar-B Fuel Tank.
Their mass fully fuelled with liquid fuel and oxidizer is between 5.245 and 9.333 times higher than the dry mass. The fuel-containing Mk3 fuselages and adapters have the highest factor with 9.33 times, followed by the FL-T and Rockomax tanks at 9 times. Third are the Kerbodyne extra large tanks which have a wet mass 8.2 times that of their dry mass. The ROUND-8 Torodial Fuel Tank has a relatively low factor of only 5.44 times the dry mass and the Oscar-B Fuel Tank is the most inefficient with a mass factor of 5.245. The combined fuel and oxidizer mass compared to the dry mass is the factor reduced by one. Thus the mass of the contents in a FL-T or Rockomax tank is 8 times higher than the dry mass.
Liquid fuel and oxidizer density are both 5 kg/unit | Mass (t) |
Liquid Fuel () |
Oxidizer () | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Image | Part | Radial size | Cost () |
Full | Empty | Max. Temp. (K) |
Tolerance (m/s) |
Tolerance (g) | ||
R-4 'Dumpling' External Tank | X | 50 (39.90) |
0.1238 | 0.0138 | 2 000 | 5 | 50 | 9.9 | 12.1 | |
R-11 'Baguette' External Tank | X | 50 (25.21) |
0.3038 | 0.0338 | 2 000 | 5 | 50 | 24.3 | 29.7 | |
R-12 'Doughnut' External Tank | Small | 147 (119.46) |
0.3375 | 0.0375 | 2 000 | 6 | 50 | 27 | 33 | |
Oscar-B Fuel Tank | Tiny | 70 (51.64) |
0.225 | 0.025 | 2 000 | 6 | 50 | 18 | 22 | |
FL-T100 Fuel Tank | Small | 150 (104.1) |
0.5625 | 0.0625 | 2 000 | 6 | 50 | 45 | 55 | |
FL-T200 Fuel Tank | Small | 275 (183.2) |
1.125 | 0.125 | 2 000 | 6 | 50 | 90 | 110 | |
FL-T400 Fuel Tank | Small | 500 (316.4) |
2.25 | 0.25 | 2 000 | 6 | 50 | 180 | 220 | |
FL-T800 Fuel Tank | Small | 800 (432.8) |
4.5 | 0.5 | 2 000 | 6 | 50 | 360 | 440 | |
Rockomax X200-8 Fuel Tank | Large | 800 (432.8) |
4.5 | 0.5 | 2 000 | 6 | 50 | 360 | 440 | |
Rockomax X200-16 Fuel Tank | Large | 1 550 (815.6) |
9 | 1 | 2 000 | 6 | 50 | 720 | 880 | |
Rockomax X200-32 Fuel Tank | Large | 3 000 (1 531.2) |
18 | 2 | 2 000 | 6 | 50 | 1 440 | 1 760 | |
Rockomax Jumbo-64 Fuel Tank | Large | 5 750 (2 812.4) |
36 | 4 | 2 000 | 6 | 50 | 2 880 | 3 520 | |
Kerbodyne S3-3600 Tank | Extra large | 3 250 (1 597.6) |
20.25 | 2.25 | 2 000 | 6 | 50 | 1 620 | 1 980 | |
Kerbodyne S3-7200 Tank | Extra large | 6 500 (3 195.2) |
40.5 | 4.5 | 2 000 | 6 | 50 | 3 240 | 3 960 | |
Kerbodyne S3-14400 Tank | Extra large | 13 000 (6 390.4) |
81 | 9 | 2 000 | 6 | 50 | 6 480 | 7 920 | |
Mk2 Rocket Fuel Fuselage Short | Mk2 | 750 (566.4) |
2.29 | 0.29 | 2 500 | 50 | 50 | 180 | 220 | |
Mk2 Rocket Fuel Fuselage | Mk2 | 1 450 (1 082.8) |
4.57 | 0.57 | 2 500 | 50 | 50 | 360 | 440 | |
Mk3 Rocket Fuel Fuselage Short | Mk3 | 2 500 (1 352.5) |
14.29 | 1.79 | 2 700 | 50 | 50 | 1 125 | 1 375 | |
Mk3 Rocket Fuel Fuselage | Mk3 | 5 000 (2 705) |
28.57 | 3.57 | 2 700 | 50 | 50 | 2 250 | 2 750 | |
Mk3 Rocket Fuel Fuselage Long | Mk3 | 10 000 (5 410) |
57.14 | 7.14 | 2 700 | 50 | 50 | 4 500 | 5 500 | |
C7 Brand Adapter - 2.5m to 1.25m | Small, Large | 800 (433.0) |
4.57 | 0.57 | 2 300 | 20 | 50 | 360 | 440 | |
C7 Brand Adapter Slanted - 2.5m to 1.25m | Small, Large | 800 (433.0) |
4.57 | 0.57 | 2 300 | 20 | 50 | 360 | 440 | |
Mk2 to 1.25m Adapter | Small, Mk2 | 550 (366.4) |
2.29 | 0.29 | 2 500 | 50 | 50 | 180 | 220 | |
Mk2 to 1.25m Adapter Long | Small, Mk2 | 1 050 (682.8) |
4.57 | 0.57 | 2 500 | 50 | 50 | 360 | 440 | |
Mk2 Bicoupler | Small, Mk2 x 2 | 860 (676.4) |
2.29 | 0.29 | 2 500 | 50 | 50 | 180 | 220 | |
2.5m to Mk2 Adapter | Large, Mk2 | 800 (432.8) |
4.57 | 0.57 | 2 500 | 50 | 50 | 360 | 440 | |
Mk3 to Mk2 Adapter | Mk2, Mk3 | 2 200 (1 282.0) |
11.43 | 1.43 | 2 600 | 50 | 50 | 900 | 1 100 | |
Mk3 to 2.5m Adapter | Large, Mk3 | 2 500 (1 353.0) |
14.29 | 1.79 | 2 600 | 50 | 50 | 1 125 | 1 375 | |
Mk3 to 2.5m Adapter Slanted | Large, Mk3 | 2 500 (1 353.0) |
14.29 | 1.79 | 2 600 | 50 | 50 | 1 125 | 1 375 | |
Mk3 to 3.75m Adapter | Extra large, Mk3 | 2 500 (1 353.0) |
14.29 | 1.79 | 2 600 | 50 | 50 | 1 125 | 1 375 | |
Kerbodyne ADTP-2-3 | Large, Extra large | 1 623 (246.0) |
16.88 | 1.88 | 2 000 | 6 | 50 | 1 350 | 1 650 |
Liquid fuel tanks
Liquid fuel tanks can only be used with jet engines and the LV-N "Nerv" Atomic Rocket Motor, as they don't contain the oxidizer required to operate rocket engines.
Liquid Fuel Density is 5 kg/unit | Mass (t) |
Liquid Fuel () | |||||||
---|---|---|---|---|---|---|---|---|---|
Image | Part | Radial size | Cost () |
Full | Empty | Max. Temp. (K) |
Tolerance (m/s) |
Tolerance (g) | |
Engine Nacelle[Note 1] | Small | 600 (480) |
0.925 | 0.15 | 2 000 | 10 | 50 | 150 | |
Engine Pre-cooler[Note 1] | Small | 1 650 (1 618) |
0.375 | 0.15 | 2 000 | 10 | 50 | 40 | |
Mk1 Diverterless Supersonic Intake[Note 1] | Small | 720 (560) |
1.18 | 0.17 | 2 000 | 10 | 50 | 200 | |
Mk0 Liquid Fuel Fuselage | Tiny | 200 (160) |
0.275 | 0.025 | 2 000 | 10 | 50 | 50 | |
Mk1 Liquid Fuel Fuselage | Small | 550 (230) |
2.25 | 0.25 | 2 000 | 10 | 50 | 400 | |
Mk2 Liquid Fuel Fuselage Short | Mk2 | 750 (430) |
2.29 | 0.29 | 2 500 | 50 | 50 | 400 | |
Mk2 Liquid Fuel Fuselage | Mk2 | 1 450 (810) |
4.57 | 0.57 | 2 500 | 50 | 50 | 800 | |
Mk3 Liquid Fuel Fuselage Short | Mk3 | 4 300 (2 300) |
14.29 | 1.79 | 2 700 | 50 | 50 | 2 500 | |
Mk3 Liquid Fuel Fuselage | Mk3 | 8 600 (4 600) |
28.57 | 3.57 | 2 700 | 50 | 50 | 5 000 | |
Mk3 Liquid Fuel Fuselage Long | Mk3 | 17 200 (9 200) |
57.14 | 7.14 | 2 700 | 50 | 50 | 10 000 | |
NCS Adapter | Small, Tiny | 320 (256) |
0.5 | 0.1 | 2 400 | 10 | 50 | 80 | |
FAT-455 Aeroplane Main Wing[Note 2] | X | 2 800 (2 320) |
3.78 | 0.78 | 1 200 | 15 | 50 | 600 | |
Big-S Wing Strake[Note 2] | X | 1 000 (920) |
0.6 | 0.1 | 2 400 | 15 | 50 | 100 | |
Big-S Delta Wing[Note 2] | X | 3 000 (2 760) |
2.0 | 0.5 | 2 400 | 15 | 50 | 300 |
- ↑ 1.0 1.1 1.2 The Engine Nacelle, Engine Pre-cooler, and Mk1 Diverterless Supersonic Intake are a combination of air intake and liquid fuel tank. Only the tank properties are shown. They are located in the "Aerodynamic" category in the game.
- ↑ 2.0 2.1 2.2 The FAT-455 Aeroplane Main Wing, Big-S Wing Strake, and Big-S Delta Wing are a combination of lifting surface and liquid fuel tank. Only the tank properties are shown. They are located in the "Aerodynamic" category in the game.
Monopropellant fuel tanks
Monopropellant tanks store monopropellant gas, which is consumed by RCS maneuvering thrusters.
In real life, the term "monopropellant" is used to refer to fuels that do not require additional reactants to effect energy: although liquid fuel requires oxidizer to burn to produce thrust, monopropellants require no additional chemicals to work. A well-known real life monopropellant is hydrazine.
RCS Fuel Density is 4 kg/unit | Mass (t) |
Monopropellant () | |||||||
---|---|---|---|---|---|---|---|---|---|
Image | Part | Radial size | Cost () |
Full | Empty | Max. Temp. (K) |
Tolerance (m/s) |
Tolerance (g) | |
FL-R20 RCS Fuel Tank | Tiny | 200 (176) |
0.10 | 0.02 | 2 000 | 12 | 50 | 20 | |
FL-R120 RCS Fuel Tank | Small | 330 (186) |
0.56 | 0.08 | 2 000 | 12 | 50 | 120 | |
FL-R750 RCS Fuel Tank | Large | 1 800 (900) |
3.4 | 0.4 | 2 000 | 12 | 50 | 750 | |
Mk2 Monopropellant Tank | Mk2 | 750 (270) |
1.89 | 0.29 | 2 500 | 50 | 50 | 400 | |
Mk3 Monopropellant Tank | Mk3 | 5 040 (2 520) |
9.8 | 1.4 | 2 700 | 50 | 50 | 2 100 | |
Stratus-V Roundified Monopropellant Tank | X | 200 (176) |
0.10 | 0.02 | 2 000 | 12 | 50 | 20 | |
Stratus-V Cylindrified Monopropellant Tank | X | 250 (190) |
0.23 | 0.03 | 2 000 | 12 | 50 | 50 |
Xenon gas tanks
Xenon density is 0.1 kg/unit | Mass (t) |
Xenon () | |||||||
---|---|---|---|---|---|---|---|---|---|
Image | Part | Radial size | Cost () |
Full | Empty | Max. Temp. (K) |
Tolerance (m/s) |
Tolerance (g) | |
PB-X50R Xenon Container | Radial mounted | 2 220 (600) |
0.054 | 0.014 | 2 000 | 12 | 50 | 405 | |
PB-X150 Xenon Container | Tiny | 3 680 (800) |
0.100 | 0.024 | 2 000 | 6 | 50 | 720 | |
PB-X750 Xenon Container | Small | 24 300 (1 500) |
0.76 | 0.19 | 2 000 | 6 | 50 | 5 700 |
Ore tanks
Template:Stats Table Ore Tanks
Dry mass and wet mass
In the part configuration the dry mass is given and the resources are given in a volumetric unit. To calculate the mass of the fuel and the mass fully fueled, wet mass, the density is also required. In general the mass of one type of fuel is:
- is the mass of the fuel
- is the volume of the fuel
- is the density of the fuel
The total mass of the fuel is then simply the sum of all the fuels in the tank. And the wet mass is then the fuel masses added the dry mass.
- is the fuel mass
- and are the wet and dry mass
- and are the volume and density of each fuel
Because all stock tanks, except the liquid fuel and oxidizer tanks, use only one type of fuel the sum of the different fuels in the tank is not required. And because the liquid fuel and oxidizer have the same density, the volumes can be added before converted into mass.
- is the fuel mass of the liquid fuel/oxidizer mixture
- is the wet mass of a tank with liquid fuel/oxidizer mixture
- is the dry mass
- and are the volume of liquid fuel and oxidizer
- is the density of liquid fuel and oxidizer (they are the same)
The Rockomax X200-16 Fuel Tank for example: Based on some rough in-game measurements it is approximately 0.67·1.25 meters tall with a radius of 1·1.25 meters (1.25 is the rescale factor!). This would give the tank/stage a real world volume of around 4110.9 liters (4.1109 m³). Dividing the tank's actual in-game fuel capacity (720 unit + 880 unit = 1600 unit) with this volume, the result is 389.2 unit/m³. If we count with 0.8 ratio for volumetric usage efficiency (real life example: 80% for the Saturn V's stages), then 1 unit = 2.0555 liters. The reason the entire volume is not used is because the actual fuel tank is a pressure vessel with rounded ends inside the cylindrical stage. The tanks itself are also insulated to keep the cryogenic fuels from boiling away to quickly. As the tanks of the liquid fuels and solid fuels has better volumetric usage efficiency, we can estimate the volume of 1 unit is about 2-2.5 liters.
Comparison
The table does only contain tanks, which contain both liquid fuel and oxidizer. The height is units, where one unit is the height of the FL-T100 Fuel Tank.
Height (units) | 1 | 2 | 4 | 8 | 16 |
---|---|---|---|---|---|
Small | FL-T100 Fuel Tank | FL-T200 Fuel Tank | FL-T400 Fuel Tank | FL-T800 Fuel Tank | — |
Large | — | Rockomax X200-8 Fuel Tank | Rockomax X200-16 Fuel Tank | Rockomax X200-32 Fuel Tank | Rockomax Jumbo-64 Fuel Tank |
Extra large | — | — | Kerbodyne S3-3600 Tank | Kerbodyne S3-7200 Tank | Kerbodyne S3-14400 Tank |
Notes
- Before v0.18 all fuel tanks provided fuel for both rocket engines and jet engines, because there was only one type of fuel recognized in game.
- Since v0.18 fuselages cannot be used to power rocket engines anymore, as they don't contain the necessary oxidizer.
See also
- Reaction engine
- Jet engine
- Liquid fuel
- Oxidizer
- ore
- ISRU Converter
- In-situ resource utilization on Wikipedia
- Liquid hydrogen on Wikipedia
- Liquid oxygen on Wikipedia
- RP-1 on Wikipedia