Electric charge/ja
Electric charge(電力 electricity、energyとも)は動力源の1つで様々なパーツを機能させるのに利用されている。無人機にとっては生命線で枯渇すると操作不能になる。有人機でもリアクションホイールなどの機能に不可欠である。
発電方法
分類 | パーツ名称 | 発電量 | Usage |
---|---|---|---|
ロケットエンジン | LV-T30 Liquid Fuel Engine/ja | 7.0 ⚡/秒 | 1.691 /⚡ |
LV-T45 Liquid Fuel Engine/ja | 6.0 ⚡/秒 | 1.835 /⚡ | |
Toroidal Aerospike Rocket/ja | 5.0 ⚡/秒 | 1.828 /⚡ | |
LV-N Atomic Rocket Motor/ja | 5.0 ⚡/秒 | 0.3055 /⚡ | |
Rockomax "Poodle" Liquid Engine/ja | 8.0 ⚡/秒 | 1.436 /⚡ | |
Rockomax "Skipper" Liquid Engine/ja | 10.0 ⚡/秒 | 3.782 /⚡ | |
Rockomax "Mainsail" Liquid Engine/ja | 12.0 ⚡/秒 | 7.715 /⚡ | |
Kerbodyne KR-2L Advanced Engine/ja | 12.0 ⚡/秒 | 11.176 /⚡ | |
S3 KS-25x4 Engine Cluster/ja | 12.0 ⚡/秒 | 15.102 /⚡ | |
ジェットエンジン | Basic Jet Engine/ja | 4.0 ⚡/秒 | 0.0239 /⚡ |
TurboJet Engine/ja | 5.0 ⚡/秒 | 0.0716 /⚡ |
エンジン内蔵発電機
ロケットエンジンやジェットエンジンの多くには発電機が内蔵されている。実際の発電量はスロットルの開放率に基づいて変化し、エンジンが停止していれば発電機能も働かない。右の表はエンジン別に真空中でスロットル全開にした場合の発電量を示している。Jet engines only generate electricity when supplied with intake air.
太陽光パネル
太陽光パネルは軽量な発電機である。しかし太陽光が直接当たってなければ発電できないため、天体の影に入ってしまうと発電能力は失われしまう。不安定な電力供給に対応するためバッテリーを合わせて搭載することが推奨される。
OX-STAT Photovoltaic Panels以外の太陽光パネルは全て折り畳み式で、発電するためには右クリックメニューかアクショングループからパネル展開操作をする必要がある。展開した太陽光パネルは非常に脆く、衝突や空気抵抗で簡単に壊れてしまうため、離陸、大気圏再突入、エアロブレーキの際は折り畳む必要がある。
発電効率は太陽光パネルとKerbolの角度に依存する。OX-STAT Photovoltaic Panels以外の太陽光パネルには回転軸があり、自動的にKerbolに向けて可能な限り効率が上がるよう角度調整される。機体の向きを手動で調整して、回転軸位置の改善や自機の陰を回避することで最大効率で発電できるようになる。
発電量はKerbolからの距離に依存する。but rather than following the real-life inverse-square law it experiences a spline curve of 3 piecewise cubics defined from 4 points:
Kerbolからの距離 (m) | 発電量 | 解説 |
---|---|---|
0 | 10x | |
13,599,840,256 | 1x | Kerbin軌道上 |
68,773,560,320 | 0.5x | Jool軌道の長半径 |
206,000,000,000 | 0x | Jool軌道の約3倍 |
原子力電池
PB-NUK Radioisotope Thermoelectric Generatorは太陽光を必要とせず、常に一定量の発電ができ、耐久性も高く空気抵抗にも強い、信頼性の高い電力源である。ただし同程度の発電力を持つ太陽光パネルと比べて大幅に重量が多い。
打ち上げ支柱
TT18-A Launch Stability Enhancerには1基あたり1.0 ⚡/sの充電機能があるため打ち上げ前は電力枯渇を防ぐことが出来る。
電力の保存
電力を保存しておくことで発電機なしの機体寿命の延長のほかにも、最大電力消費(実験結果の伝送など)や発電停止(影に入った太陽光パネル)にも対処することができる。
電力保存機能があるパーツ:
- 無人司令モジュール : 少量だが電力を保存でき、自身の機能維持にも使われる。
- 有人司令モジュール : 自身はSAS機能以外に電力を消費せず容量も大きいが、パーツとしては比較的重量があり大きい。
- バッテリー : 小型で容量が大きい。重量あたりの容量は全バッテリーで同一の20 ⚡/kg(50 g/⚡)である。
- Probodobodyne RoveMate : 低容量だがバッテリー機能のある土台。
電力保存機能があるパーツは出発時すべて満充電の状態になっている。
電力消費
- 無人司令モジュール : 常時1.7 ⚡/minまたは3.0 ⚡/minの電力を消費する。数分間であれば内蔵電源のみで操縦が可能。
- リアクションホイール : 司令モジュールまたはSASモジュールに内蔵されており、動作する間のみ電力を消費する。
- アンテナ : Careerモード・Scienceモードで実験結果の伝送時に消費する。
- 照明・センサー : 点灯中や測定数値表示中は少量だが電力を消費し続ける。
- イオンエンジン・ローバー用車輪 : 推進力発生中は大量に電力を消費する。
無人機は電力が枯渇すると機体全体の機能が停止し、いかなる操作(太陽光パネルの展開も含む)も一切受け付けなくなる。機能回復させるにはドッキングによる他機からの充電、または宇宙飛行士のEVAによる太陽光パネル手動展開によって電力を回復させる必要がある。