Difference between revisions of "Eve"

From Kerbal Space Program Wiki
Jump to: navigation, search
m (added science section)
m (Reverted edits by Kerbin fellow (talk) to last revision by Abelinoss)
 
(181 intermediate revisions by 81 users not shown)
Line 1: Line 1:
{{:Eve/Data}}
+
{{Infobox/Body}}
  
'''Eve''' is the second [[planet]] from [[Kerbol]], the second largest body orbiting it, and KSP's analogue for [[w:Venus|the planet Venus]]. It has one small moon: a captured asteroid called '''[[Gilly]]'''.
+
'''Eve''' is the second [[planet]] from [[Kerbol]], the closest planet to [[Kerbin]], and KSP's analogue for the planet [[w:Venus|Venus]]. It has one small moon: a captured asteroid called '''[[Gilly]]'''. It is especially notable for its extremely thick, dense atmosphere, which makes aerobraking and returning two of the most dangerous activities in the game. Additionally, Eve has the greatest surface gravity of all the planets, and the second highest escape velocity, second only to [[Jool]]. This makes it extremely hard to send missions there because of the [[Eve Effect]].
 +
<br/>
 +
A [[Tutorial:How to get to Eve|tutorial to get to Eve]] is available at the link.
 +
==In-game description ==
  
Eve is the closest planet to [[Kerbin]].   Visiting it potentially requires the least [[delta-v]] of any planet because its huge gravity well and dense atmosphere mitigate the difficulties that its slight relative inclination poses and greatly ease aero-captures, transfers, and landings; unfortunately, takeoff and escape therefore require the most delta-v of any celestial body with a solid surface.
+
'''KSP 1:'''
 +
{{Quote
 +
|Eve is certainly the purplest object in the solar system. It’s one of the larger, most visible objects, mainly because of its very, very purple tint.<br />
 +
<br />
 +
''It is considered by some to be almost a sister planet to Kerbin. Well, despite the purple, and the toxic atmosphere, and the extreme pressures and temperatures. Actually, it’s not very similar at all is it? Who are those people?''
 +
|[[Kerbal Astronomical Society]]}}
 +
 
 +
'''KSP 2:'''
 +
{{Quote
 +
|Eve's gorgeous cloud cover, picturesque liquid-sulfur oceans, and cute moon give the impression of an ideal tourist hotspot. Unfortunately, Eve's intense gravitational pull and dense, high-pressure atmosphere tend to turn visits into one-way trips. As our engineers say, "Come for the views, stay because your ship exploded on entry."|}}
  
The combination of high gravity and thick atmosphere makes return missions from the sea level of Eve very difficult. It requires about 11,500 m/s of delta-v to get into orbit from sea level.
 
 
 
== Topography ==
 
== Topography ==
 
<!-- This image is old. Please update it with a version from 0.18.
 
<!-- This image is old. Please update it with a version from 0.18.
 
[[File:Eve_isa_mapsat.png|thumb|right|A topographic map of Eve made with the ISA MapSat plugin]]
 
[[File:Eve_isa_mapsat.png|thumb|right|A topographic map of Eve made with the ISA MapSat plugin]]
 
-->
 
-->
The surface of Eve looks not unlike that of Saturn's largest moon, Titan. It has several oceans, among which lie large, flat continents. The terrain has a few mountain peaks, but mostly consists of rolling hills that resemble purple sand dunes. These are speckled with small boulders, no doubt worn down by Eve's pressure, temperature, and wind. Eve's surface is covered with craters. The composition of the violet liquid which fills the oceans and lakes is unknown, although water remains a possibility: the boiling point of water is slightly higher than the surface temperature when taking the high atmospheric pressure into account.<ref>According to [http://www.wolframalpha.com/input/?i=water+at+507+kpa WolframAlpha] the boiling temperature is about 2.5&nbsp;K higher than the highest temperature measured.</ref> According to the devs during a livestream, it was joked that the lakes were made of rocket fuel. Eve's highest mountain range has a peak of 7526 m.
+
The surface of Eve seems to looks not unlike that of Saturn's largest moon, Titan. It has several [[ocean|oceans]], among which lie large, flat continents. The terrain has a few mountain peaks but mostly consists of rolling hills that resemble purple sand dunes. These are speckled with small boulders, no doubt worn down by Eve's pressure, temperature, and winds. Eve's surface is covered with craters. Eve's highest mountain range has a peak of 7526 m.
  
 
== Atmosphere ==
 
== Atmosphere ==
[[File:Atmosphere_kerbin_eve.png|thumb|left|A comparison of the atmospheres of Eve and Kerbin]]
+
[[File:Eve_Atmosphere_T&P.png|thumbnail|left|Temperature and pressure of Eve's atmosphere as a function of altitude.]]
 
+
[[File:(updated) Comparison of the atmospheres of Eve and Kerbin.png|thumb|left|(updated) Comparison of the atmospheres of Eve and Kerbin]]
Eve's [[atmosphere]] begins at 96,708.6 m and is extremely dense: at 11,250 m, it's as thick as Kerbin's atmosphere at sea level (1 atm), and at Eve sea level the atmospheric pressure is 5 atm. Its atmospheric pressure fades exponentially, with a scale height of 7000 m. The atmosphere should be superheated due to the thick atmosphere trapping in heat, much like Venus, but this is not currently implemented.
 
 
 
In general, the atmospheric pressure on Eve at an altitude expressed in meters is:<ref>A [[LV-N Atomic Rocket Motor|nuclear engine]] has a specific impulse of 220 in 1 atm or higher, 800 in vacuum, and the following at various Eve altitudes:
 
{| class="wikitable"
 
| altitude (m)     || 11263 || 11268 || 11322 || 11598 || 11896 || 12200 || 12799 || 13868 || 14586 || 15292 || 16725 || 18711 || 22800 || 23556 || 32000 || 38000 || 43000 || 51963
 
|-
 
| specific impulse ||  220 || 220.2 || 224.6 || 246.9 || 269.9 || 292.4 || 334.0 || 400.0 || 438.8 || 473.4 || 533.7 || 600.2 || 688.2 || 699.8 || 769.8 || 787.3 || 793.8 || 798.3
 
|}</ref>
 
 
 
: <math>p_e = 5\ e^{-altitude/7000}</math>
 
  
From within Eve's atmosphere, the sky appears indigo during nighttime and a violet-purple color during daytime. During dawn and dusk, the sky is green.
+
Eve has an extremely dense [[atmosphere]] with a mass of approximately 1.9×10<sup>17</sup> kilograms, a sea level pressure of 506.625 kilopascals (5 atmospheres), and a depth of 90,000 meters.  Compared to the atmosphere of [[Kerbin]], Eve's atmosphere has 4 times the mass and 5 times the sea level pressure. At an altitude of 14,579 m on Eve, the atmospheric pressure is the same as at sea level on Kerbin (1 atm).  The pressure at the top of Eve's highest mountain peak is 2.4 atm.
  
Jet engines do not function in Eve's atmosphere, since it contains no oxygen &mdash; they make noise and consume fuel, but they produce no thrust. Planes with other propulsion methods do, however, work very well, and are a great way to explore the planet. They work best between 35 km and 25 km where the atmosphere generates enough lift to glide and steer, but not enough drag to slow the aircraft excessively.
+
The average [[w:Molecular_mass|molecular weight]] of Eve air is 43 g/mol, and its [[w:Heat_capacity_ratio|adiabatic index]] is 1.20.  Although the composition of Eve's atmosphere is unknown these values suggest that it may consist largely of [[w:Carbon_dioxide|carbon dioxide]]. Another possibility is that the atmosphere is filled with ethane gas (C<sub>2</sub>H<sub>6</sub>, with a heat capacity of 1.2 and a molecular weight of 30 g/mol) and other compounds. If we assume LiquidFuel is kerosene, the joke that the lakes of Eve are LiquidFuel is strengthened by the purple colour since it is often mixed with a purple dye prior to sale. With a thick atmosphere filled with hydrocarbons, it is easy to imagine reactions that would yield compounds such as RP-1, the grade of kerosene used as rocket fuel. An atmosphere of 90% CO<sub>2</sub> and 10% C<sub>2</sub>H<sub>6</sub> would have molecular weights and adiabatic indexes close to what is seen on Eve, though there are other combinations of gases that would work as well.
  
As with version 0.17.1, an [[aerobraking]] maneuver arriving from Kerbin and resulting in orbit around Eve - without using fuel for braking - can be done aiming for a periapsis at approximately 72,500 m.
+
Like all other atmospheres in the game, Eve's atmosphere fades exponentially as altitude increases. The [[w:Scale_height|scale height]] varies with altitude, which is a change from pre-1.0 [[Version_history|versions]] of the game.  The pressure-altitude profile is globally constant and independent of temperature.  The following table below gives the atmospheric pressure at various altitudes above sea level.
  
The following table gives terminal velocities at different Eve altitudes. These are also the velocities at which a ship should travel for a fuel-optimal ascent from Eve, given the game's model of atmospheric drag.<ref>http://forum.kerbalspaceprogram.com/showthread.php/6664-Mini-challenge-max-altitude-with-this-supplied-spacecraft?p=100912&viewfull=1#post100912</ref>
 
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
! Altitude (m) !! Velocity (m/s)
+
! Altitude (m) !! Pressure (Pa) !! Pressure (atm)
 +
|-
 +
| 0 || 506 625 || 5.000
 +
|-
 +
| 2 500 || 403 913 || 3.986
 +
|-
 +
| 5 000 || 316 277 || 3.121
 +
|-
 +
| 7 500 || 242 677 || 2.395
 
|-
 
|-
|     0 || {{sigfigs|{{VT|planet=Eve|alt=0}}|3}}
+
| 10 000 || 182 072 || 1.797
 
|-
 
|-
| 1000 || {{sigfigs|{{VT|planet=Eve|alt=1000}}|3}}
+
| 12 500 || 133 423 || 1.317
 
|-
 
|-
| 5000 || {{sigfigs|{{VT|planet=Eve|alt=5000}}|3}}
+
| 15 000 || 95 689 || 0.944
 
|-
 
|-
| 10000 || {{sigfigs|{{VT|planet=Eve|alt=10000}}|3}}
+
| 20 000 || 44 335 || 0.438
 
|-
 
|-
| 15000 || {{sigfigs|{{VT|planet=Eve|alt=15000}}|3}}
+
| 25 000 || 18 073 || 0.178
 
|-
 
|-
| 20000 || {{sigfigs|{{VT|planet=Eve|alt=20000}}|3}}
+
| 30 000 || 8 233 || 0.081
 
|-
 
|-
| 30000 || {{sigfigs|{{VT|planet=Eve|alt=30000}}|3}}
+
| 35 000 || 5 196 || 0.051
 
|-
 
|-
| 40000 || {{sigfigs|{{VT|planet=Eve|alt=40000}}|3}}
+
| 40 000 || 3 500 || 0.035
 
|-
 
|-
| 50000 || {{sigfigs|{{VT|planet=Eve|alt=50000}}|3}}
+
| 50 000 || 121.8 || 0.001
 
|-
 
|-
| 60000 || {{sigfigs|{{VT|planet=Eve|alt=60000}}|3}}
+
| 60 000 || 23.00 || 0.000
 +
|-
 +
| 70 000 || 4.344 || 0.000
 +
|-
 +
| 80 000 || 0.8205 || 0.000
 +
|-
 +
| 90 000 || 0 || 0.000
 
|}
 
|}
  
== Science ==
+
The surface of Eve is extremely hot, with a globally averaged sea level temperature of approximately 135 °C.  Except for a small inversion layer between 50-60 km at low latitudes, air temperatures decrease with increasing altitude up to an altitude of 70 km.  Above 70 km, the rarified atmosphere warms as altitude increases.  Despite the hot surface temperatures, the lack of a [[w:Stratosphere|stratosphere]] means that Eve's atmosphere is cooler than Kerbin's at altitudes above ≈26.5 km.  The temperature rise above 70 km suggests the presence of a [[w:Thermosphere|thermosphere]] in this area(70km to the [[w:Kármán line|Kármán line(90km)]]
 +
 
 +
Air temperatures vary with latitude and time of day.  At the equator, sea level temperatures vary between a nighttime low of 147 °C and a daytime high of 156 °C.  At the poles, the temperature varies between 87 °C and 95 °C.  Since Eve has no axial tilt, there are no seasonal temperature variations.
 +
 
 +
From within Eve's atmosphere, the sky appears indigo during nighttime and a violet-purple color during the daytime. During dawn and dusk, the sky is green. The color of Eve's sky is likely due to wind-borne dust from Eve's purple surface, though it has also been suggested that iodine gas could be an atmospheric constituent.
 +
 
 +
=== Atmospheric flight ===
 +
 
 +
The thickness of Eve's atmosphere makes it well suited for [[aerobraking|aerocapture]] from a high-speed interplanetary intercept.  The periapsis altitude required for a successful aerocapture depends on the spacecraft's drag characteristics, its approach velocity, and the desired apoapsis of the resulting orbit.  The most effective periapsis for aerocapture is best determined experimentally; however, for a Hohmann transfer originating from Kerbin, it is found that the median value is about 62 km. Heat shields are required to prevent destructive overheating.
 +
 
 +
[[Parachute]]s work very effectively in Eve's dense atmosphere. A vehicle in Kerbin's atmosphere would require 3 times as much parachute area to attain the same descent rate on Eve.
 +
 
 +
Landing legs on Eve can easily break because of Eve's high gravity and, surprisingly enough, atmospheric pressure.
 +
 
 +
Because of Eve's high atmospheric pressure, rocket engines perform poorly at low altitudes.  The engines best suited for low altitude use on Eve are the [[T-1 Toroidal "Aerospike" Liquid Fuel Engine|Aerospike]], [[S3 KS-25 "Vector" Liquid Fuel Engine|Vector]], and [[S3 KS-25x4 "Mammoth" Liquid Fuel Engine|Mammoth]].
 +
 
 +
Jet engines do not function in Eve's atmosphere since it contains no oxygen — they make noise and consume fuel, but they produce no thrust. Planes with other propulsion methods do, however, work very well, and are a great way to explore the planet. They work best between 35 km and 25 km where the atmosphere generates enough lift to glide and steer, but not enough drag to slow the aircraft excessively.
 +
 
 +
==Oceans==
 +
 
 +
A large portion of Eve is covered in [[ocean]]s of "Explodium",<ref>The oceans are referred to as "Explodium Seas" by science experiments</ref> a liquid with a density of 1.5 tonnes per cubic metre<ref>[http://forum.kerbalspaceprogram.com/content/358-KSP-1-0-5-is-live! As of 1.0.5], oceans now have explicit density values: Eve's oceans now have a density of 1.5 tonnes/m<sup>3</sup> while water has a density of 1.0 tonnes/m<sup>3</sup>.</ref> that is heavily implied to be a form of rocket fuel. A real-world liquid that closely fits the properties of explodium is hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), which has a density of 1.450 tonnes per cubic metre and can be used as a monopropellant.
 +
 
 +
Eve is one of only three celestial bodies with oceans, alongside [[Kerbin]] and [[Laythe]].
 +
 
 +
== Biomes ==
 +
 
 +
[[File:EveBiomeMapContrast.png|thumb|none|Eve biome map (legend)]]
 +
 
 +
Eve has 14 accesible [[Biome]]s with their own science to be collected, as well as one inaccesible [[Biome]]. Its main features are a large Explodium Sea with some scattered Islands and Shallow areas as well as a Main Continent and Poles. Within the Continent lie three large bodies of liquid, one being a Crater Lake. There are also areas covered with Impact Ejecta.
 +
 
 +
=== Biome list ===
 +
 
 +
[[File:EveBiomeMap.png|thumbnail|400px|right|Eve's biomes in KSP 1.12 (made with Scansat, hand-colored)]]
 +
 
 +
{{Biome list|body=Eve|list=
 +
* <span style="color:black; background:#dcc2ff">Poles</span>
 +
* <span style="color:white; background:#5a1272">Lowlands</span>
 +
* <span style="color:white; background:#712a8a">Midlands</span>
 +
* <span style="color:white; background:#8947a0">Highlands</span>
 +
* <span style="color:black; background:#cea7dd">Foothills</span>
 +
* <span style="color:white; background:#a771be">Peaks</span>
 +
* <span style="color:white; background:#a764ff">Impact Ejecta</span>
 +
* <span style="color:white; background:#a764ff">Craters (Inaccesible)</span>
 +
* <span style="color:white; background:#af5985">Explodium Sea</span>
 +
* <span style="color:black; background:#cea7dd">Akatsuki Lake</span>
 +
* <span style="color:white; background:#8b6690">Shallows</span>
 +
* <span style="color:white; background:#8c2c5c">Crater Lake</span>
 +
* <span style="color:black; background:#d390b2">Western Sea</span>
 +
* <span style="color:black; background:#ffffff">Olympus</span>
 +
* <span style="color:white; background:#670c3a">Eastern Sea</span>
 +
}}
 +
 
 +
=== Missing and Buggy Biomes ===
 +
 
 +
In Kerbal Space Program, each biome has an RGB color assigned to it. To know in which biome a craft is, the game obtains the color of the biome from a Biome map (Seen above) and then referenced with the list of biomes.
 +
 
 +
Due to an oversight in the creation of Eve's biomes, the biome "Craters" is inaccesible, as it shares the same RGB value with the "Impact Ejecta" biome. Biome maps suggest that "Impact Ejecta" is supposed to surround the "Craters" biome, but due to the same RGB value, only "Impact Ejecta" can be recognized.
  
Eve's orbit and atmosphere have a science multiplier of 7, which is rather average. But the surface has a multiplier of 12, which is the highest science multiplier in the whole solar system. Also, some experiments give different results when in water than when on solid ground, even though they are technically not different [[biome]]s.
+
The biome "Akatsuki Lake" on the other hand, probably due to an oversight, is scattered in small pockets all around the planet, with it composing less than 0.001% of the surface of the planet. Most of these pockets are small areas located near the supposed-to-be "Craters" biome in the biome map (For example, you can find this biome at 0.08° S, 8.44° W). The "Akatsuki Lake" actually does exist in a large chunk on biome maps, as it is supposed to be the lake at 50 lat, 100 lng, but instead the lake's biome is "Foothills". This suggests that the developers forgot to add it in.
 +
 
 +
== KSP2 ==
 +
=== Surface Research Locations ===
 +
 
 +
Surface research locations include:
 +
 
 +
* Foothills
 +
* Impact Sites
 +
* Seas
 +
* Shallows
 +
* Olympus
 +
 
 +
==== Olympus ====
 +
Olympus is a large mountain that almost reaches the clouds, but not quite, with a summit around 2685 m above sea level. (-24.88, -148.26)
 +
 
 +
=== Maps ===
 +
==== Biomes ====
 +
[[File:eve_region_ui.jpg|thumb|none|Eve biome map with legend (as of v0.2.1.0 (from Orbital Survay mod))]]
 +
[https://i.imgur.com/O4eIDkh.jpeg Eve biome map (Imgur)]
 +
 
 +
==== Visual map ====
 +
[[File:eve_visual.png|thumb|none|Eve visual map (as of v0.2.1.0)]]
 +
[https://i.imgur.com/QykdVdu.png Eve visual map (Imgur)]
  
 
== Natural satellites ==
 
== Natural satellites ==
Eve's only natural satellite is the tiny captured asteroid [[Gilly]] in a highly eccentric and inclined orbit. Gilly is the smallest celestial body in the [[Kerbol]] system.
+
Eve's only natural satellite is the tiny captured asteroid [[Gilly]] in a highly eccentric and inclined orbit. Gilly is the smallest celestial body in the [[Kerbol]] system and has the lowest surface gravity of any celestial body.
  
 
== Orbital statistics ==
 
== Orbital statistics ==
Ascent through the thickest portion of Eve's atmosphere requires large amounts of delta-V. Driving to, and launching from the peak of one of Eve's mountains can drastically reduce the amount of delta-V required (thus allowing successful launches with significantly lighter rockets). The highest peak on Eve in 0.21.1 is 7540&nbsp;m near (25° S, 158.5° W)
+
 
 +
Visiting Eve potentially requires the least [[delta-v]] of any planet because its huge gravity well and dense atmosphere mitigate the difficulties that its slight relative inclination poses and greatly ease aero-captures, transfers, and landings; unfortunately, takeoff and escape therefore require the most delta-v of any celestial body with a solid surface.
 +
 
 +
The combination of high gravity and thick atmosphere makes return missions from the sea level of Eve very difficult. It requires about 7,000-7,500 m/s of delta-v to get into orbit from sea level. Driving to and launching from the peak of one of Eve's mountains can drastically reduce the amount of delta-V required (thus allowing successful launches with significantly lighter rockets). The highest peak on Eve since {{version|0.21.1}} is 7540&nbsp;m high, found near (25° S, 158.5° W)
 +
<!-- Delta-V table outdated with 1.0 release.
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 89: Line 185:
 
|-
 
|-
 
| 7540 || 7,968
 
| 7540 || 7,968
|}
+
|}-->
  
A [[w:Geosynchronous_orbit|synchronous orbit]] of Eve requires an altitude of 10373.195 km and a velocity of 858.95 m/s.
+
A [[w:Geosynchronous orbit|synchronous orbit]] of Eve requires an altitude of 10328.47&nbsp;km and a velocity of 860.79&nbsp;m/s.
For a semisynchronous orbit of ½ Eve day (11.25 hours or 40500 seconds) an orbit of 6275.676 km above Eve is needed with a velocity of 1082.2 m/s.
+
For a semi-synchronous orbit of ½ an Eve day (11.25 hours or 40500 seconds) an orbit of 6247.50&nbsp;km above Eve is needed with a velocity of 1084.53&nbsp;m/s.
  
== Reference Frames ==
+
== Reference frames ==
 
{{:Eve/RefFrame}}
 
{{:Eve/RefFrame}}
  
 
== Gallery ==
 
== Gallery ==
 +
=== [[Kerbal Space Program]] ===
 
<gallery>
 
<gallery>
Eve.png|Orbiting Eve.
+
eve_map_800.gif|A topographic height map of Eve made with the ISA MapSat plugin. (Pre 0.18)
File:Eve_and_gilly.jpg|Eve (mid-left) and Gilly.
+
Eve_landed_1.png|Eve landscape shot.
<!-- This image is old. Please update it with a version from 0.18. File:eve_map_800.gif|A topographic height map of Eve made with the ISA MapSat plugin. -->
+
Kerbal flying in Eve's atmosphere.png | A Kerbal dropped from space.
File:Eve_landed_1.png|Eve landscape shot.
+
Eve-sunrise.png | Sunrises and sunsets on Eve can be really beautiful, with colors ranging from green to yellow to pink.
File:Eve_landed_2.png|Another Eve landscape shot.
+
Eve-plane.png| An unmanned plane in Eve's atmosphere.
File:screenshot91.png | A Kerbal dropped from space.
+
Eve_r0_1.png|A manned rover landing on the surface of Eve.
File:Eve-sunrise.png | Sunrises and sunsets on Eve can be really beautiful, with colors ranging from green to yellow to pink.
+
EveAerobraking.png|A large spacecraft aerobraking in Eve's upper atmosphere.
File:Eve-plane.png| An unmanned plane in Eve's atmosphere.
+
evenight.jpg | A probe on the surface of Eve at twilight
File:Eve_r0_1.png|A manned rover landing on the surface of Eve.
+
EveKerbonaut.png|A Kerbal floating in front of a large interplanetary Eve ship.
File:Skibladnir space shuttle.jpg|Skibladnir delivering two rovers to Eve
+
Eve-from-afar.PNG|Eve from over 10 million Kilometres.
 +
evesatellite.png|An observation satellite around Eve.
 +
</gallery>
 +
=== [[Kerbal Space Program 2]] ===
 +
<gallery>
 +
KSP2 Eve Horizon.png|The horizon of Eve in KSP2.
 
</gallery>
 
</gallery>
  
 
== Bugs ==
 
== Bugs ==
  
* Eve has higher gravity than [[Kerbin]], restricting a Kerbal's jump to only half a meter and making EVA jets useless. This being said, if a [[Kerbal]] falls from more than 4 m, they will hit the ground much harder than on Kerbin, which may cause them to clip into the terrain and accelerate away from Eve at phenomenal speed, usually sending the unlucky Kerbal on an escape trajectory from [[Kerbol]] if they are not killed by the fall. They may bring something into interstellar space with them if they hit an object instead of the ground.
+
* Eve has higher gravity than [[Kerbin]], restricting a Kerbal's jump to only half a meter and making EVA jets useless. This being said, if a [[Kerbal]] falls from more than 4 m, they will hit the ground much harder than on Kerbin, which may cause a glitch to happen in which they will clip into the terrain and accelerate away from Eve at phenomenal speed, sometimes faster than the speed of light itself, usually sending the unlucky Kerbal on an escape trajectory from [[Kerbol]] if they are not killed by the fall. They may bring something into interstellar space with them if they hit an object instead of the ground.
* [[Solar panel]]s can break on the surface of Eve even when retracted. This may be due to Eve's high gravity.
+
* [[Solar panel]]s will probably break off in flight, even with very low velocity. It's best to wait to extend them till stable on the surface, however, they can break on the surface of Eve even when retracted. This may be due to Eve's high gravity.
* Rovers can be challenging to drive on Eve due to its gravity. The rover's wheels will easily break.
+
* Rovers can be challenging to drive on Eve due to its gravity, as the rover's wheels will easily break, but on the upside, since the gravity pulls them lower on their shocks and thus lower the centre of mass, they will be harder to flip over. Although not a glitch, it could cause clipping issues with a Kerbal sitting in [[EAS-1 External Command Seat]]s
  
*Landing legs on Eve can easily break because of Eve's high gravity.
+
*When landing fast, a craft will sometimes sink into the surface of Eve. This can be fixed by using landing legs or engines to lift the ship up.
*When landing fast, craft will sometimes sink into the surface of Eve. This can be fixed by using landing legs to lift the ship up.
+
 
 +
*When parachuting with a kerbal with warp on, it may be possible to start moving at 1% of the speed of light or more.
  
 
== Changes ==
 
== Changes ==
;{{Version|0.21|}}
+
=== KSP 1 ===
 +
;[[1.2]]
 +
* Added biomes
 +
* Redid Eve's pressure curve to smooth it out and remove errors.
 +
;[[0.90]]
 +
* Added biomes
 +
;[[0.21]]
 
* Terrain Tweaks &mdash; more land mass to the surface
 
* Terrain Tweaks &mdash; more land mass to the surface
;{{Version|0.18|}}
+
;[[0.18]]
 
* Art pass.
 
* Art pass.
* Terrain tweaks &mdash; the tallest points are now about 6 km in altitude, compared to 11 km before.
+
* Terrain tweaks &mdash; the tallest points are now about 6&nbsp;km in altitude, compared to 11&nbsp;km before.
;{{Version|0.17|}}
+
;[[0.17]]
 
* Initial Release
 
* Initial Release
 +
 +
=== KSP 2 ===
 +
;v0.2.0.0
 +
* Added research locations
  
 
== Notes ==
 
== Notes ==

Latest revision as of 18:45, 29 September 2024

Eve
Eve
Eve as seen from orbit.
Planet of Kerbol
Orbital Characteristics
Semi-major axis 9 832 684 544 m [Note 1]
Apoapsis 9 931 011 387 m [Note 1]
Periapsis 9 734 357 701 m [Note 1]
Orbital eccentricity 0.01
Orbital inclination 2.1 °
Argument of periapsis 0 °
Longitude of the ascending node 15 °
Mean anomaly 3.14 rad (at 0s UT)
Sidereal orbital period 5 657 995 s
261 d 5 h 39 m 55.1 s
Synodic orbital period 14 687 035.5 s
Orbital velocity 10 811 - 11 029 m/s
Physical Characteristics
Equatorial radius 700 000 m
Equatorial circumference 4 398 230 m
Surface area 6.1575216×1012 m2
Mass 1.2243980×1023 kg
Standard gravitational parameter 8.1717302×1012 m3/s2
Density 85 219.677 kg/m3
Surface gravity 16.7 m/s2 (1.701 g)
Escape velocity 4 831.96 m/s
Sidereal rotation period 80 500.000 s
3 d 4 h 21 m 40 s
Solar day 81 661.857 s
3 d 4 h 41 m 1.9 s
Sidereal rotational velocity 54.636 m/s
Synchronous orbit 10 328.47 km
Sphere of influence 85 109 365 m [Note 1]
Atmospheric Characteristics
Atmosphere present Yes
Atmospheric pressure 506.625 kPa
5 atm
Atmospheric height 90 000 m
5.0×10-6 atm
Temperaturemin -113.13 °C 160.02 K
Temperaturemax 146.85 °C 420 K
Oxygen present No
Scientific multiplier
Surface 8
Splashed 8
Lower atmosphere 6
Upper atmosphere 6
Near space 7
Outer space 5
Recovery 5

  1. 1.0 1.1 1.2 1.3 The distances are given from the body's center, not from the surface (unlike ingame)

Eve is the second planet from Kerbol, the closest planet to Kerbin, and KSP's analogue for the planet Venus. It has one small moon: a captured asteroid called Gilly. It is especially notable for its extremely thick, dense atmosphere, which makes aerobraking and returning two of the most dangerous activities in the game. Additionally, Eve has the greatest surface gravity of all the planets, and the second highest escape velocity, second only to Jool. This makes it extremely hard to send missions there because of the Eve Effect.
A tutorial to get to Eve is available at the link.

In-game description

KSP 1:

Eve is certainly the purplest object in the solar system. It’s one of the larger, most visible objects, mainly because of its very, very purple tint.


It is considered by some to be almost a sister planet to Kerbin. Well, despite the purple, and the toxic atmosphere, and the extreme pressures and temperatures. Actually, it’s not very similar at all is it? Who are those people?''

Kerbal Astronomical Society

KSP 2:

Eve's gorgeous cloud cover, picturesque liquid-sulfur oceans, and cute moon give the impression of an ideal tourist hotspot. Unfortunately, Eve's intense gravitational pull and dense, high-pressure atmosphere tend to turn visits into one-way trips. As our engineers say, "Come for the views, stay because your ship exploded on entry."

Topography

The surface of Eve seems to looks not unlike that of Saturn's largest moon, Titan. It has several oceans, among which lie large, flat continents. The terrain has a few mountain peaks but mostly consists of rolling hills that resemble purple sand dunes. These are speckled with small boulders, no doubt worn down by Eve's pressure, temperature, and winds. Eve's surface is covered with craters. Eve's highest mountain range has a peak of 7526 m.

Atmosphere

Temperature and pressure of Eve's atmosphere as a function of altitude.
(updated) Comparison of the atmospheres of Eve and Kerbin

Eve has an extremely dense atmosphere with a mass of approximately 1.9×1017 kilograms, a sea level pressure of 506.625 kilopascals (5 atmospheres), and a depth of 90,000 meters. Compared to the atmosphere of Kerbin, Eve's atmosphere has 4 times the mass and 5 times the sea level pressure. At an altitude of 14,579 m on Eve, the atmospheric pressure is the same as at sea level on Kerbin (1 atm). The pressure at the top of Eve's highest mountain peak is 2.4 atm.

The average molecular weight of Eve air is 43 g/mol, and its adiabatic index is 1.20. Although the composition of Eve's atmosphere is unknown these values suggest that it may consist largely of carbon dioxide. Another possibility is that the atmosphere is filled with ethane gas (C2H6, with a heat capacity of 1.2 and a molecular weight of 30 g/mol) and other compounds. If we assume LiquidFuel is kerosene, the joke that the lakes of Eve are LiquidFuel is strengthened by the purple colour since it is often mixed with a purple dye prior to sale. With a thick atmosphere filled with hydrocarbons, it is easy to imagine reactions that would yield compounds such as RP-1, the grade of kerosene used as rocket fuel. An atmosphere of 90% CO2 and 10% C2H6 would have molecular weights and adiabatic indexes close to what is seen on Eve, though there are other combinations of gases that would work as well.

Like all other atmospheres in the game, Eve's atmosphere fades exponentially as altitude increases. The scale height varies with altitude, which is a change from pre-1.0 versions of the game. The pressure-altitude profile is globally constant and independent of temperature. The following table below gives the atmospheric pressure at various altitudes above sea level.

Altitude (m) Pressure (Pa) Pressure (atm)
0 506 625 5.000
2 500 403 913 3.986
5 000 316 277 3.121
7 500 242 677 2.395
10 000 182 072 1.797
12 500 133 423 1.317
15 000 95 689 0.944
20 000 44 335 0.438
25 000 18 073 0.178
30 000 8 233 0.081
35 000 5 196 0.051
40 000 3 500 0.035
50 000 121.8 0.001
60 000 23.00 0.000
70 000 4.344 0.000
80 000 0.8205 0.000
90 000 0 0.000

The surface of Eve is extremely hot, with a globally averaged sea level temperature of approximately 135 °C. Except for a small inversion layer between 50-60 km at low latitudes, air temperatures decrease with increasing altitude up to an altitude of 70 km. Above 70 km, the rarified atmosphere warms as altitude increases. Despite the hot surface temperatures, the lack of a stratosphere means that Eve's atmosphere is cooler than Kerbin's at altitudes above ≈26.5 km. The temperature rise above 70 km suggests the presence of a thermosphere in this area(70km to the Kármán line(90km)

Air temperatures vary with latitude and time of day. At the equator, sea level temperatures vary between a nighttime low of 147 °C and a daytime high of 156 °C. At the poles, the temperature varies between 87 °C and 95 °C. Since Eve has no axial tilt, there are no seasonal temperature variations.

From within Eve's atmosphere, the sky appears indigo during nighttime and a violet-purple color during the daytime. During dawn and dusk, the sky is green. The color of Eve's sky is likely due to wind-borne dust from Eve's purple surface, though it has also been suggested that iodine gas could be an atmospheric constituent.

Atmospheric flight

The thickness of Eve's atmosphere makes it well suited for aerocapture from a high-speed interplanetary intercept. The periapsis altitude required for a successful aerocapture depends on the spacecraft's drag characteristics, its approach velocity, and the desired apoapsis of the resulting orbit. The most effective periapsis for aerocapture is best determined experimentally; however, for a Hohmann transfer originating from Kerbin, it is found that the median value is about 62 km. Heat shields are required to prevent destructive overheating.

Parachutes work very effectively in Eve's dense atmosphere. A vehicle in Kerbin's atmosphere would require 3 times as much parachute area to attain the same descent rate on Eve.

Landing legs on Eve can easily break because of Eve's high gravity and, surprisingly enough, atmospheric pressure.

Because of Eve's high atmospheric pressure, rocket engines perform poorly at low altitudes. The engines best suited for low altitude use on Eve are the Aerospike, Vector, and Mammoth.

Jet engines do not function in Eve's atmosphere since it contains no oxygen — they make noise and consume fuel, but they produce no thrust. Planes with other propulsion methods do, however, work very well, and are a great way to explore the planet. They work best between 35 km and 25 km where the atmosphere generates enough lift to glide and steer, but not enough drag to slow the aircraft excessively.

Oceans

A large portion of Eve is covered in oceans of "Explodium",[1] a liquid with a density of 1.5 tonnes per cubic metre[2] that is heavily implied to be a form of rocket fuel. A real-world liquid that closely fits the properties of explodium is hydrogen peroxide (H2O2), which has a density of 1.450 tonnes per cubic metre and can be used as a monopropellant.

Eve is one of only three celestial bodies with oceans, alongside Kerbin and Laythe.

Biomes

Eve biome map (legend)

Eve has 14 accesible Biomes with their own science to be collected, as well as one inaccesible Biome. Its main features are a large Explodium Sea with some scattered Islands and Shallow areas as well as a Main Continent and Poles. Within the Continent lie three large bodies of liquid, one being a Crater Lake. There are also areas covered with Impact Ejecta.

Biome list

Eve's biomes in KSP 1.12 (made with Scansat, hand-colored)
Eve In-game biome map as of 1.2
  • Poles
  • Lowlands
  • Midlands
  • Highlands
  • Foothills
  • Peaks
  • Impact Ejecta
  • Craters (Inaccesible)
  • Explodium Sea
  • Akatsuki Lake
  • Shallows
  • Crater Lake
  • Western Sea
  • Olympus
  • Eastern Sea

Missing and Buggy Biomes

In Kerbal Space Program, each biome has an RGB color assigned to it. To know in which biome a craft is, the game obtains the color of the biome from a Biome map (Seen above) and then referenced with the list of biomes.

Due to an oversight in the creation of Eve's biomes, the biome "Craters" is inaccesible, as it shares the same RGB value with the "Impact Ejecta" biome. Biome maps suggest that "Impact Ejecta" is supposed to surround the "Craters" biome, but due to the same RGB value, only "Impact Ejecta" can be recognized.

The biome "Akatsuki Lake" on the other hand, probably due to an oversight, is scattered in small pockets all around the planet, with it composing less than 0.001% of the surface of the planet. Most of these pockets are small areas located near the supposed-to-be "Craters" biome in the biome map (For example, you can find this biome at 0.08° S, 8.44° W). The "Akatsuki Lake" actually does exist in a large chunk on biome maps, as it is supposed to be the lake at 50 lat, 100 lng, but instead the lake's biome is "Foothills". This suggests that the developers forgot to add it in.

KSP2

Surface Research Locations

Surface research locations include:

  • Foothills
  • Impact Sites
  • Seas
  • Shallows
  • Olympus

Olympus

Olympus is a large mountain that almost reaches the clouds, but not quite, with a summit around 2685 m above sea level. (-24.88, -148.26)

Maps

Biomes

File:Eve region ui.jpg
Eve biome map with legend (as of v0.2.1.0 (from Orbital Survay mod))

Eve biome map (Imgur)

Visual map

File:Eve visual.png
Eve visual map (as of v0.2.1.0)

Eve visual map (Imgur)

Natural satellites

Eve's only natural satellite is the tiny captured asteroid Gilly in a highly eccentric and inclined orbit. Gilly is the smallest celestial body in the Kerbol system and has the lowest surface gravity of any celestial body.

Orbital statistics

Visiting Eve potentially requires the least delta-v of any planet because its huge gravity well and dense atmosphere mitigate the difficulties that its slight relative inclination poses and greatly ease aero-captures, transfers, and landings; unfortunately, takeoff and escape therefore require the most delta-v of any celestial body with a solid surface.

The combination of high gravity and thick atmosphere makes return missions from the sea level of Eve very difficult. It requires about 7,000-7,500 m/s of delta-v to get into orbit from sea level. Driving to and launching from the peak of one of Eve's mountains can drastically reduce the amount of delta-V required (thus allowing successful launches with significantly lighter rockets). The highest peak on Eve since version 0.21.1 is 7540 m high, found near (25° S, 158.5° W)

A synchronous orbit of Eve requires an altitude of 10328.47 km and a velocity of 860.79 m/s. For a semi-synchronous orbit of ½ an Eve day (11.25 hours or 40500 seconds) an orbit of 6247.50 km above Eve is needed with a velocity of 1084.53 m/s.

Reference frames

Time warp Minimum Altitude
Any
5× 90 000 m (above the atmosphere)
10× 90 000 m (above the atmosphere)
50× 90 000 m (above the atmosphere)
100× 120 000 m
1 000× 240 000 m
10 000× 480 000 m
100 000× 600 000 m

Gallery

Kerbal Space Program

Kerbal Space Program 2

Bugs

  • Eve has higher gravity than Kerbin, restricting a Kerbal's jump to only half a meter and making EVA jets useless. This being said, if a Kerbal falls from more than 4 m, they will hit the ground much harder than on Kerbin, which may cause a glitch to happen in which they will clip into the terrain and accelerate away from Eve at phenomenal speed, sometimes faster than the speed of light itself, usually sending the unlucky Kerbal on an escape trajectory from Kerbol if they are not killed by the fall. They may bring something into interstellar space with them if they hit an object instead of the ground.
  • Solar panels will probably break off in flight, even with very low velocity. It's best to wait to extend them till stable on the surface, however, they can break on the surface of Eve even when retracted. This may be due to Eve's high gravity.
  • Rovers can be challenging to drive on Eve due to its gravity, as the rover's wheels will easily break, but on the upside, since the gravity pulls them lower on their shocks and thus lower the centre of mass, they will be harder to flip over. Although not a glitch, it could cause clipping issues with a Kerbal sitting in EAS-1 External Command Seats
  • When landing fast, a craft will sometimes sink into the surface of Eve. This can be fixed by using landing legs or engines to lift the ship up.
  • When parachuting with a kerbal with warp on, it may be possible to start moving at 1% of the speed of light or more.

Changes

KSP 1

1.2
  • Added biomes
  • Redid Eve's pressure curve to smooth it out and remove errors.
0.90
  • Added biomes
0.21
  • Terrain Tweaks — more land mass to the surface
0.18
  • Art pass.
  • Terrain tweaks — the tallest points are now about 6 km in altitude, compared to 11 km before.
0.17
  • Initial Release

KSP 2

v0.2.0.0
  • Added research locations

Notes

  1. The oceans are referred to as "Explodium Seas" by science experiments
  2. As of 1.0.5, oceans now have explicit density values: Eve's oceans now have a density of 1.5 tonnes/m3 while water has a density of 1.0 tonnes/m3.