Difference between revisions of "Kerbin"

From Kerbal Space Program Wiki
Jump to: navigation, search
(Atmosphere)
m (List of biomes: It's not specific to the SPH & VAB roofs. I spent a while testing, and it's exactly the same biome when touching the building at ground level, and on every level of roof to the very top.)
Line 65: Line 65:
 
** [[Runway]]
 
** [[Runway]]
 
** [[Spaceplane Hangar|SPH]]
 
** [[Spaceplane Hangar|SPH]]
*** SPH Main Building (Roof)
+
*** SPH Main Building
 
*** SPH Round Tank
 
*** SPH Round Tank
 
*** SPH Tanks
 
*** SPH Tanks
Line 75: Line 75:
 
*** Tracking Station Hub
 
*** Tracking Station Hub
 
** [[Vehicle Assembly Building|VAB]]
 
** [[Vehicle Assembly Building|VAB]]
*** VAB Main Building (Roof)
+
*** VAB Main Building
 
*** VAB Pod Memorial
 
*** VAB Pod Memorial
 
*** VAB Round Tank
 
*** VAB Round Tank
Line 81: Line 81:
 
}}
 
}}
 
|}
 
|}
 +
 
== Atmosphere ==
 
== Atmosphere ==
 
<!-- SPECULATION: Kerbin has an atmosphere of unknown composition, though Kerbin's plants and animals would not survive without O<sub>2</sub>, N<sub>2</sub>, and CO<sub>2</sub>. -->Kerbin has a thick, warm [[atmosphere]] with a mass of approximately 4.7×10<sup>16</sup> kilograms, a sea level pressure of 101.325 kilopascals (1 atmosphere), and a depth of 70,000 meters.  The atmosphere contains oxygen and can support combustion.  Kerbin is the only planet or moon with a breathable atmosphere.
 
<!-- SPECULATION: Kerbin has an atmosphere of unknown composition, though Kerbin's plants and animals would not survive without O<sub>2</sub>, N<sub>2</sub>, and CO<sub>2</sub>. -->Kerbin has a thick, warm [[atmosphere]] with a mass of approximately 4.7×10<sup>16</sup> kilograms, a sea level pressure of 101.325 kilopascals (1 atmosphere), and a depth of 70,000 meters.  The atmosphere contains oxygen and can support combustion.  Kerbin is the only planet or moon with a breathable atmosphere.

Revision as of 11:44, 8 June 2015

Kerbin
Kerbin
Kerbin as seen from orbit.
Planet of Kerbol
Orbital Characteristics
Semi-major axis 13 599 840 256 m [Note 1]
Apoapsis 13 599 840 256 m [Note 1]
Periapsis 13 599 840 256 m [Note 1]
Orbital eccentricity 0
Orbital inclination 0 °
Argument of periapsis 0 °
Longitude of the ascending node 0 °
Mean anomaly 3.14 rad (at 0s UT)
Sidereal orbital period 9 203 545 s
426 d 0 h 32 m 24.6 s
Synodic orbital period Not defined
Orbital velocity 9 285 m/s
Physical Characteristics
Equatorial radius 600 000 m
Equatorial circumference 3 769 911 m
Surface area 4.5238934×1012 m2
Mass 5.2915158×1022 kg
Standard gravitational parameter 3.5316000×1012 m3/s2
Density 58 484.090 kg/m3
Surface gravity 9.81 m/s2 (1 g)
Escape velocity 3 431.03 m/s
Sidereal rotation period 21 549.425 s
5 h 59 m 9.4 s
Solar day 21 600.000 s
5 h 59 m 60 s
Sidereal rotational velocity 174.94 m/s
Synchronous orbit 2 863.33 km
Sphere of influence 84 159 286 m [Note 1]
Atmospheric Characteristics
Atmosphere present Yes
Atmospheric pressure 101.325 kPa
1 atm
Atmospheric height 70 000 m
1.0×10-6 atm
Temperaturemin -86.20 °C 186.95 K
Temperaturemax 15 °C 288.15 K
Oxygen present Yes
Scientific multiplier
Surface 0.3
Splashed 0.4
Lower atmosphere 0.7
Upper atmosphere 0.9
Near space 1
Outer space 1.5
Recovery 1

  1. 1.0 1.1 1.2 1.3 The distances are given from the body's center, not from the surface (unlike ingame)

Kerbin is the home planet of the Kerbals, the location of the Space Center, and the main focus of Kerbal Space Program. It is also the Earth analog for the game and has two moons named Mun and Minmus.

Kerbin is the third planet in orbit around the star Kerbol. It is the third largest celestial body that orbits Kerbol, following Jool and Eve. Jool's moon Tylo has the same radius of Kerbin, though it may be classified as larger, as the highest point on Tylo is about 5 km higher than the highest point on Kerbin. However, Tylo has only 80% of Kerbin's mass.

Reaching a stable orbit around Kerbin is one of the first milestones a player might achieve in the game. Doing so with a fuel-optimal ascent[1] requires a delta-v of ≈4500 m/s,[2] (or about 3500 if one is using Ferram Aerospace Research mod) and is the second highest value after Eve. Many interplanetary missions expend over half of their delta-V in reaching Kerbin orbit. The energy required to escape a body from a given altitude is always exactly twice the kinetic energy of a circular orbit around the body at that height, leading one observer to remark:

If you can get your ship into orbit, you're halfway to anywhere.

Robert Heinlein, quoted on page 194 of A Step Farther Out by Jerry Pournelle

In-game description

A unique world, Kerbin has flat plains, soaring mountains and wide, blue oceans. Home to the Kerbals, it has just the right conditions to support a vast, seemingly undepletable population of the eager green creatures.

Reaching a stable orbit around Kerbin is one of the first things budding space programs strive for. It is said that he who can get his ship into orbit is halfway to anywhere.

Kerbal Astronomical Society

Topography

Topographical representation of Kerbin's surface as of 0.18.2. Click for high resolution. by Zeroignite
Kerbal at Kerbin's highest peak

Kerbin has a roughly equal distribution of surface liquid water and solid land, with polar icecaps and scattered deserts. Some of its mountains exceed 6 km in height, with the tallest peak being 6767 m in altitude at the coordinates 46°21'32" E 61°35'53" N. The lowest point is almost 1.4 km deep and about 313° south-west of the Kerbal Space Center.

Craters

Terrain model centered on one of Kerbin's most pronounced craters

Unlike other bodies in its system, Kerbin has few visible craters because its environment would erode craters from the few meteors that avoid the gravity or surface of its large moon and survive entry. Nevertheless, some geological formations indicate that bodies have violently collided with Kerbin: two planetary features appear to be impact craters that are coincidentally separated by nearly 180 degrees. The least eroded, and therefore presumably youngest, of the two (both are in excess of 100 km diameter) lies along the coastline. The uplift is easily visible as a series of islands, and the feature has a central peak that pokes up through the water (also known as a rebound peak.) The other, and older of the two, is near the prime meridian in the northern hemisphere and is more easily missed, but its uplift rims are visible, and it has a central rebound peak.

Biomes

The biomes on Kerbin

Before 0.90 Kerbin was one of the few bodies with multiple biomes, Kerbin was second only to the Mun in number of biomes it has. Following the 0.90 update all celestial bodies have biomes. Science experiments can be performed at all biomes, though Kerbin's low multipliers result in less impressive results than more distant worlds. Kerbin's biomes show a loose correlation with Earth's biomes and geographic features. Uniquely, Kerbin has 33 location biomes at KSC, these are comprised of each building and their props, the crawlerway, the flag, and KSC itself; these give a jumpstart to gathering Science points in Career mode.

Kerbin biome map as of 0.90.0

List of biomes

  • Ice Caps
  • Tundra
  • Highlands
  • Mountains
  • Grasslands
  • Deserts
  • Badlands
  • Shores
  • Water

KSC location biome list

Atmosphere

Kerbin has a thick, warm atmosphere with a mass of approximately 4.7×1016 kilograms, a sea level pressure of 101.325 kilopascals (1 atmosphere), and a depth of 70,000 meters. The atmosphere contains oxygen and can support combustion. Kerbin is the only planet or moon with a breathable atmosphere.

The average molecular weight of Kerbin air is 28.9644 g/mol, and its adiabatic index is 1.40. This suggests that Kerbin likely has an earthlike nitrogen-oxygen atmosphere. The air-fuel ratio of jet engines operating in Kerbin's atmosphere suggests that the percentage of oxygen is similar to that of Earth's atmosphere (about 21%).

Like all other atmospheres in the game, Kerbin's atmosphere fades exponentially as altitude increases. The scale height varies with altitude, which is a change from pre-1.0 versions of the game. The pressure-altitude profile is globally constant and independent of temperature. The following table gives the atmospheric pressure at various altitudes above sea level.

Altitude (m) Pressure (Pa) Pressure (atm)
0 101 325 1.000
2 500 69 652 0.687
5 000 45 675 0.451
7 500 28 962 0.286
10 000 17 965 0.177
15 000 6 715 0.066
20 000 2 526 0.025
25 000 988.6 0.010
30 000 407.8 0.004
40 000 78.89 0.001
50 000 15.49 0.000
60 000 2.387 0.000
70 000 0 0.000

Kerbin's atmosphere can be divided into three major layers, comparable to Earth's troposphere, stratosphere and mesosphere. In the lower and upper layers, temperature decreases as altitude increases, while the middle layer spans of a region of increasing temperature. The boundary between the lower and middle layers occurs at an altitude of about 16 km at low latitudes, and about 9 km at high latitudes. The boundary between the middle and upper layer occurs at an altitude of about 38 km.

Air temperatures vary with latitude and time of day. At the equator, sea level temperatures vary between a nighttime low of 32 °C and a daytime high of 41 °C. At the poles, the temperature varies between -35 °C and -30 °C. The globally averaged sea level temperature is approximately 13.5 °C. Since Kerbin has no axial tilt, there are no seasonal temperature variations.

The atmosphere of Kerbin is patterned after Earth's U.S. Standard Atmosphere (USSA), though with the vertical height scale reduced by 20%. Kerbin's "base" temperature and atmospheric pressure can be very closely approximated using the equations of the USSA, where Kerbin's geometric altitude, z, is converted to Earth's geopotential altitude, h, using the following equation:

h = 7963.75·z / (6371 + 1.25·z)

The base temperature is the temperature less latitudinal and diurnal adjustments; it is roughly equal to the global mean temperature.

Atmospheric flight

The thickness of Kerbin's atmosphere makes it well suited for aerobraking from a high-speed interplanetary intercept. The periapsis altitude required for a successful aerocapture depends on the spacecraft's drag characteristics, its approach velocity, and the desired apoapsis of the resulting orbit. For spacecraft returning to Kerbin from Duna or Eve, a periapsis altitude of about 35,000 m should, under most conditions, result in an aerocapture. For higher speed intercepts, such as a return from Jool, a periapsis altitude of about 30,000 m should yield effective results.

Parachutes perform well in Kerbin's dense air, allowing landings on both land and water to be accomplished without the aid of propulsion.

Because of the presence of oxygen, jet engines can operate in Kerbin's atmosphere. And together with it's thickness Kerbin's atmosphere is ideally suited for aircraft flight.

Orbits

A Stayputnik MK2 satellite

A synchronous orbit is achieved with a semi-major axis of 3 463.33 km. Kerbisynchronous Equatorial Orbit (KEO) has a circularly uniform altitude of 2 863.33 km and a speed of 1 009.81 m/s. From a 70 km low equatorial orbit, the periapsis maneuver requires 676.5 m/s and the apoapsis maneuver requires 434.9 m/s. A syncronous Tundra orbit with eccentricity of 0.2864 and inclination of 63 degrees is achieved at 3799.7/1937.7 km. Inclination correlates with eccentricity: higher inclined orbits need to be more eccentric, while equatorial orbit may be circular, essentially KEO.

A semi-synchronous orbit with an orbital period of ½ of Kerbin's rotation period (2 h 59 m 34.7 s or 10774.7 seconds) is achieved at an altitude of 1 581.76 km with an orbital velocity of 1 272.28 m/s. A semi-syncronous Molniya orbit with eccentricity of 0.742[3] and inclination of 63 degrees can not be achieved, because the periapsis would be 36 km below the ground. The highest eccentricity of a semi-synchronous orbit with a periapsis of 70 km is 0.693 with an apoapsis of 3100.36 km.

The Hill sphere (the radius around the planet at which moons are gravitationally stable) of Kerbin is 136 185 km, or roughly 227 Kerbin radii.

Interplanetary travel

From the lowest stable orbit around Kerbin (70 km), the amount of delta-V needed to reach the orbits of other celestials is:

Body Delta-V
Mun ~860 m/s
Minmus ~930 m/s
Eve ~1033 m/s
Duna ~1060 m/s
Moho ~1676 m/s
Jool ~1915 m/s
Eeloo ~2100 m/s
Kerbol escape ~2740 m/s

For comparison, the Δv required to reach geostationary Kerbin orbit from LKO is 1.12 km/s

Reference frames

Time warp Minimum Altitude
Any
5× 70 000 m (above the atmosphere)
10× 70 000 m (above the atmosphere)
50× 70 000 m (above the atmosphere)
100× 120 000 m
1 000× 240 000 m
10 000× 480 000 m
100 000× 600 000 m

Gallery

Spoiler: Spoiler images

Changes

0.90
  • Added biomes
0.22
  • Biomes added.
0.21
  • Terrain revised to produce more detailed and interesting landforms.
0.19.1
  • Fixed ladders on the fuel tanks near the launchpad.
0.19
  • New mesh for the launchpad and area (no launchtower anymore).
  • New mesh for the runway, with lights and sloping edges for rovers.
0.18
  • Terrain overhaul: Entire planet redo. Deserts, darker and greener grass, islands, darker ocean/water, snow capped mountains. Looks more realistic.
  • Several Easter Eggs added.
  • Airport added to island off of KSC coastline. (Not a launching point)
0.17
  • Improved atmosphere visuals.
0.15
0.14.2
  • Much more varied and taller terrain added. Prior to this, some mountain ranges exceeded 600 m in height, but the tallest point was at an altitude of approximately 900 m.
0.12
0.11
  • Terrain overhaul, oceans became wet.
0.10.1
  • Atmosphere extended from ~34,500 m to ~69,000 m.
0.7.3
  • Initial Release

Trivia

Kerbin's continents are derived from libnoise,[5] a coherent noise generating library, though they have been increasingly modified with time.

Notes

  1. A fuel-optimal ascent is one which (a) minimizes velocity losses to gravity and atmospheric drag and (b) launches eastward (toward the 90 degree heading) to gain 174.5 m/s of orbital velocity for free, thanks to Kerbin's rotation.
  2. See this challenge on the forum and a popular Kerbin delta-V chart
  3. Some Major Orbit Types” uses that, the Wikipedia article mentions 0.74105, and “Orbital Parameters of a Molniya Orbit” uses 0.72.
  4. http://forum.kerbalspaceprogram.com/entry.php/247-A-Brave-New-World
  5. http://libnoise.sourceforge.net/examples/complexplanet/