Difference between revisions of "Convert-O-Tron 125"
m (Blanked the page) |
m (Reverted edits by Rocketing Rudolph (talk) to last revision by ZeroGravitas) |
||
Line 1: | Line 1: | ||
+ | {{:Convert-O-Tron 125/Box}} | ||
+ | {{Outdated| | ||
+ | *Lacking information on engineer bonuses. | ||
+ | *Other details, including fuel modes operating in parallel. | ||
+ | }} | ||
+ | The '''Convert-O-Tron 125''' is a [[converter]], the miniature version of the [[ISRU Converter|Convert-O-Tron 250]]. | ||
+ | |||
+ | == Usage == | ||
+ | The Convert-O-Tron 125 can convert [[ore]] and [[electricity]] into [[liquid fuel]], [[oxidizer]], or [[monopropellant]]. The former two can be automatically be generated in the 9:11 ratio used in chemical engines or produced individually. | ||
+ | |||
+ | Operating the Convert-O-Tron 125 on the surface of a [[planet]] or [[moon]] requires much less careful planning and allows for more flexible [[vehicle]] design. A craft used to shuttle [[fuel]] to orbit can potentially burn part of its [[payload]] to complete rendezvous or [[fuel transfer|transfer]] unused fuel reserves as part of the payload, and need only bring the fuel necessary for landing down to the surface. By contrast, an ore carrier must carry fuel for both landing and takeoff to the surface, cannot use its payload as emergency reserves, and needs to have its fuel to payload ratios adjusted to operate in different gravity wells or make rendezvous in different orbits efficiently. | ||
+ | |||
+ | Surface installations require either a [[rover]] with [[docking port]]s to ferry the fuel between the converter and the landed fuel transport craft or more difficult direct docking. Ore carriers only need to bring drills down to the surface, and can take off directly after their tanks are full. | ||
+ | |||
+ | Alternatively, an [[asteroid]] with a docked Convert-O-Tron 125 can also be used as a refueling station, and can be more efficient due to its lack of a gravity well and the ability to maneuver it into a convenient orbit. | ||
+ | |||
+ | == Efficiency == | ||
+ | The conversion rate of this module is far less efficient than that of the bigger Convert-O-Tron 250. | ||
+ | * Especially note that it requires 100kW of cooling to maintain its operating temperature, but the unit is strictly limited to 50kW of cooling, maximum. This means the unit will always overheat and lose efficiency if you leave it running. The intended use is to pulse the conversion operations, rather than leave it running for extended periods. | ||
+ | * This converter discards 80% of the ore it processes, and only converts 20% of the ore into fuel. | ||
+ | |||
+ | Despite its product description, the Convert-O-Tron 125 does not receive any bonus when operated by an engineer. | ||
+ | |||
+ | == Product description == | ||
+ | {{Quote | ||
+ | |A smaller version of Kerbodyne's mobile processing plant, this module can take raw materials containing even trace amounts of oxygen and hydrogen, and crack them into useful fuel products. When operated by a skilled engineer, you will be able to operate with better efficiency. While this smaller model is lighter than it's bigger cousin, it is less efficient, and not designed for long-term operations. These modules operate best at their ideal operating temperatures, and features auto-shutdown in the event of excessive overheating. Radiators can be used to help manage excessive heat. | ||
+ | |Kerbodyne | ||
+ | }} | ||
+ | |||
+ | == Changes == | ||
+ | ;[[1.0.5]] | ||
+ | * Initial release | ||
+ | |||
+ | {{Parts}} |
Revision as of 18:46, 17 March 2017
Convert-O-Tron 125 | ||
Converter by Kerbodyne | ||
Radial size | Small | |
Cost | (total) | 1 000.00 |
Mass | (total) | 1.250 t |
Drag | 0.2 | |
Max. Temp. | 2000 K | |
Impact Tolerance | 7 m/s | |
Research | Advanced Science Tech | |
Unlock cost | 4 000 | |
Since version | 1.0.5 | |
Part configuration | MiniISRU.cfg | |
Conversion | Liquid fuel + Oxidizer | |
Inputs | ||
Ore | 2.5 /s | |
Electric charge | 30 ⚡/s | |
Outputs | ||
Liquid fuel | 0.225 /s | |
Oxidizer | 0.275 /s | |
Conversion | Liquid fuel | |
Inputs | ||
Ore | 2.25 /s | |
Electric charge | 30 ⚡/s | |
Output | ||
Liquid fuel | 0.45 /s | |
Conversion | Oxidizer | |
Inputs | ||
Ore | 2.75 /s | |
Electric charge | 30 ⚡/s | |
Output | ||
Oxidizer | 0.55 /s | |
Conversion | Monopropellant | |
Inputs | ||
Ore | 2.5 /s | |
Electric charge | 30 ⚡/s | |
Output | ||
Monopropellant | 0.5 /s | |
Optimum Temp | 1000 K | |
Shutdown Temp | 1500 K | |
Max Cooling | 75 kW | |
Packed volume | None |
This page or section is in need of being brought up to date. Please help Kerbal Space Program Wiki by fixing inaccurate or outdated information.
|
The Convert-O-Tron 125 is a converter, the miniature version of the Convert-O-Tron 250.
Usage
The Convert-O-Tron 125 can convert ore and electricity into liquid fuel, oxidizer, or monopropellant. The former two can be automatically be generated in the 9:11 ratio used in chemical engines or produced individually.
Operating the Convert-O-Tron 125 on the surface of a planet or moon requires much less careful planning and allows for more flexible vehicle design. A craft used to shuttle fuel to orbit can potentially burn part of its payload to complete rendezvous or transfer unused fuel reserves as part of the payload, and need only bring the fuel necessary for landing down to the surface. By contrast, an ore carrier must carry fuel for both landing and takeoff to the surface, cannot use its payload as emergency reserves, and needs to have its fuel to payload ratios adjusted to operate in different gravity wells or make rendezvous in different orbits efficiently.
Surface installations require either a rover with docking ports to ferry the fuel between the converter and the landed fuel transport craft or more difficult direct docking. Ore carriers only need to bring drills down to the surface, and can take off directly after their tanks are full.
Alternatively, an asteroid with a docked Convert-O-Tron 125 can also be used as a refueling station, and can be more efficient due to its lack of a gravity well and the ability to maneuver it into a convenient orbit.
Efficiency
The conversion rate of this module is far less efficient than that of the bigger Convert-O-Tron 250.
- Especially note that it requires 100kW of cooling to maintain its operating temperature, but the unit is strictly limited to 50kW of cooling, maximum. This means the unit will always overheat and lose efficiency if you leave it running. The intended use is to pulse the conversion operations, rather than leave it running for extended periods.
- This converter discards 80% of the ore it processes, and only converts 20% of the ore into fuel.
Despite its product description, the Convert-O-Tron 125 does not receive any bonus when operated by an engineer.
Product description
“ | A smaller version of Kerbodyne's mobile processing plant, this module can take raw materials containing even trace amounts of oxygen and hydrogen, and crack them into useful fuel products. When operated by a skilled engineer, you will be able to operate with better efficiency. While this smaller model is lighter than it's bigger cousin, it is less efficient, and not designed for long-term operations. These modules operate best at their ideal operating temperatures, and features auto-shutdown in the event of excessive overheating. Radiators can be used to help manage excessive heat. — Kerbodyne |
” |
Changes
- Initial release